参考文献
|
-
[1]何文程(2010),奧斯卡得獎男女演員對電影票房收入效應之探討, 暨南大學經營管理碩士論文。
連結:
-
[2]李孟潔(2009),利用機器學習作法之中文意見分析,清華大學資訊工程學系碩士論文。
連結:
-
[3]李日斌(2014),探討臺灣網民對鄰國的情感,中山大學資訊管理學系碩士論文。
連結:
-
[6]謝金育(2012),結合貝氏網路與激勵理論之推薦機制-電影推薦系統設計,國立交通大學資訊管理學系碩士論文。
連結:
-
[8]陳聖昆(2014),電影元素對於消費者觀看意願之影響,淡江大學企業管理學系碩士論文。
連結:
-
[9]黃心宜(2014),基於影響力分析之意見單元評價的研究,淡江大學資訊管理學系碩士論文。
連結:
-
[11]楊盛帆(2009),以整合式規則來做網路論壇上的 3C 產品口碑分析,元智大學資訊管理學系碩士論文。
連結:
-
[12]葉庭瑋(2013),基於意見詞修飾關係之微網誌情感分析技術,臺北科技大學資訊工程系研究所碩士論文,第二十五屆自然語言與語音處理研討會, 168-182。
連結:
-
[14]Adomavicius, G., & Tuzhilin, A.(2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
連結:
-
[18]Bloom, K., & Argamon, S.(2009). Automated learning of appraisal extraction patterns. Language and Computers, 71(1), 249-260.
連結:
-
[22]Dawes, J.,(2008). “Do data characteristics change according to the number of scale points used? An experiment using 5-point, 7-point and 10-point scales ,” International Journal of Market Research. 50(1):61-77.
連結:
-
[23]Eriksson, B.(2006). Sentiment classification of movie reviews using linguistic parsing. Natural Language Processing. CS, 838.
連結:
-
[24]Goldberg, D., Nichols, D., Oki, B. M., & Terry, D.(1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
連結:
-
[33]Nick, Z. Z., & Themis, P.(2001). Web search using a genetic algorithm. IEEE Internet computing, 5(2), 18.
連結:
-
[35]Nunamaker Jr, J. F., Chen, M., & Purdin, T. D.(1990). Systems development in information systems research. Journal of management information systems, 7(3), 89-106.
連結:
-
[47]Tottie, Gunnel.(1991) “Negation in English Speech and Writing: A Study in Variation,” San Diego: Academic Press.
連結:
-
一、中文文獻
-
[4]林銘嬋(2016),結合意見探勘之推薦系統,東吳大學資訊管理學系碩士論文。
-
[5]曹盛涵(2014),結合評論意見探勘之推薦系統,東吳大學資訊管理學系碩士論文。
-
[7]陳柏任(2012),運用社會網絡分析法以發掘興趣導向虛擬社群關鍵使用者之研究,國立高雄大學資訊管理學系碩士論文。
-
[10]黃彥瑋(2015),挖掘續集電影評論意見之研究,東吳大學資訊管理學系碩士論文。
-
二、英文文獻
-
[13]Adomavicius, G., & Tuzhilin, A.(2004). Recommendation Technologies: Survey of Current Methods and Possible Extensions (Working Paper). Stern School of Business, New York University.
-
[15]Balahur, A., Hermida, J. M., & Montoyo, A.(2011). Detecting implicit expressions of sentiment in text based on commonsense knowledge. In Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis(pp.53-60).Association for Computational Linguistics.
-
[16]Barbosa, L., & Feng, J.(2010). Robust sentiment detection on twitter from biased and noisy data. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters(pp.36-44). Association for Computational Linguistics.
-
[17]Basu, C., Hirsh, H., & Cohen, W.(1998). Recommendation as classification: Using social and content-based information in recommendation. In Aaai/iaai (pp. 714-720).
-
[19]Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A.(2013). Recommender systems survey. Knowledge-based systems, 46, 109-132.
-
[20]Breese, J. S., Heckerman, D., & Kadie, C.(1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence(pp. 43-52). Morgan Kaufmann Publishers Inc..
-
[21]Chen, Y. H. & Wang, J. W.(2016). Using Multiple Representations to Select Instances for Text Classification. The 2016 Conference on Computational Linguistics and Speech Processing ROCLING, 194-203.
-
[25]Hu, M., & Liu, B.(2004). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). ACM.
-
[26]Ji, H., Li, J., Ren, C., & He, M.(2013). Hybrid collaborative filtering model for improved recommendation. In Service Operations and Logistics, and Informatics (SOLI), 2013 IEEE International Conference on (pp. 142-145). IEEE.
-
[27]Kearney, P., Anand, S. S., & Shapcott, M. (2005). Employing a domain ontology to gain insights into user behaviour. In Working Notes of the IJCAI Workshop on Intelligent Techniques for Web Personalization (pp. 25-32).
-
[28]Kerlinger, F. N.,(1986), Foundations of behavioral research, 3rd Edition, New York: McGraw-Hill
-
[29]Kim, S. M., & Hovy, E. (2006). Extracting opinions, opinion holders, and topics expressed in online news media text. In Proceedings of the Workshop on Sentiment and Subjectivity in Text (pp.1-8).Association for Computational Linguistics.
-
[30]Likert, R.(1932). “A Technique for the Measurement of Attitudes,” Archives of Psychology, Vol. 22, No. 140, pp. 1-55.
-
[31]Liu, B., Hu, M., & Cheng, J.(2005). Opinion observer: analyzing and comparing opinions on the web. In Proceedings of the 14th international conference on World Wide Web (pp. 342-351). ACM.
-
[32]Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J.(2003). MovieLens unplugged: experiences with an occasionally connected recommender system. In Proceedings of the 8th international conference on Intelligent user interfaces (pp. 263-266). ACM.
-
[34]Nunnally, J. C., & Bernstein, I. H.(1978).Psychometric Theory. 2nd Edition, McGraw Hill, New York.
-
[36]O’connor, M., Cosley, D., Konstan, J. A., & Riedl, J. (2001). PolyLens: a recommender system for groups of users. In ECSCW 2001 (pp. 199-218). Springer Netherlands.
-
[37]Porter, M. F.(2001).Snowball: A language for stemming algorithms, http://snowball.tartarus.org/texts/introduction.html.
-
[38]Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J.(1994). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). ACM.
-
[39]Santorini, B.(1990). “Part-of-speech Tagging Guidelines for the Penn Treebank Project.” Tech. rep. MS-CIS-90-47, Department of Computer and Information Science, University of Pennsylvania.
-
[40]Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.(2000a). Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic commerce(pp. 158-167). ACM.
-
[41]Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.(2000b). Application of dimensionality reduction in recommender system-a case study(No. TR-00-043). Minnesota Univ Minneapolis Dept of Computer Science.
-
[42]Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.(2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web(pp. 285-295). ACM.
-
[43]Schafer, J. B., Konstan, J., & Riedl, J.(1999). Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce(pp. 158-166). ACM.
-
[44]Schafer, J. B., Konstan, J. A., & Riedl, J.(2001). E-commerce recommendation applications Applications of Data Mining to Electronic Commerce (pp. 115-153): Springer.
-
[45]Sokolova, M., Japkowicz, N., & Szpakowicz, S.(2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence (pp. 1015-1021). Springer Berlin Heidelberg.
-
[46]Wiebe, J., & Riloff, E.(2005). Creating subjective and objective sentence classifiers from unannotated texts. In International Conference on Intelligent Text Processing and Computational Linguistics(pp. 486-497). Springer Berlin Heidelberg.
-
[48]Zhuang, L., Jing, F., & Zhu, X. Y.(2006). Movie review mining and summarization. In Proceedings of the 15th ACM international conference on Information and knowledge management (pp. 43-50). ACM.
|