题名

資料探勘於LINE貼圖行銷之研究

并列篇名

The study of data mining implements on the LINE Stickers Marketing

DOI

10.6846/TKU.2017.00697

作者

許似瑜

关键词

LINE貼圖 ; 新貼圖開發 ; 社群行銷 ; 商業智慧 ; 資料探勘 ; LINE Sticker ; New sticker development ; Social Media Marketing ; Business Intelligence ; Data mining

期刊名称

淡江大學管理科學學系碩士班學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

廖述賢

内容语文

繁體中文

中文摘要

LINE從2011年6月發表後帶動了LINE貼圖的發展,從一開始冰冷的文字、簡易的表情符號到現在生動活潑的LINE貼圖,讓人們聊天的模式更近一步,拉近了彼此的距離。 所謂一圖勝千言,生動的貼圖能讓人們更精準的表達當下發生的情緒及情境。這也是為甚麼LINE可以發展出超過1萬種以上的貼圖,這其中隱藏了巨大的商機。 本研究採用問卷調查法,透過集群分析並運用關連法則挖掘出有用之資訊,探究不同族群之使用者貼圖偏好、消費偏好及服務偏好經分析整理後,以提供LINE、公司企業做為經營上之參考。

英文摘要

After LINE has been published in June 2011 it drive the development of the LINE sticker . The freezing words and simple emoticons form beginning to those lively LINE stickers that we can see now, they not only make the mode that people can chat with each other closer, but also get each other close. The reason why the Line stickers can be performed more vivid than any text. Because the vivid stickers can make people more accurately express the current mood. That is why LINE can be developed more than 10,000 kinds of stickers, in which hides a huge business opportunities. The study uses the questionnaire survey procedure, by using Clustering analysis and Association rules are applied to bring out more useful information to investigate different groups of users sticker preferences, consumer preferences and service preferences after analysis and finishing. The research is provided reference of management for Line and corporate.

主题分类 商管學院 > 管理科學學系碩士班
社會科學 > 管理學
参考文献
  1. 吳緯閔(2008)。網際網路服務推薦系統。國立中央大學資訊工程研究所。桃園縣。
    連結:
  2. 陳怡如(2015)。探討社群媒體對智慧型手機遊戲行銷之影響因素。國立臺北教育大學數位科技設計學系碩士論文。臺北市。
    連結:
  3. 陶蓓麗、廖則竣、林政道(2004)。網際網路顧客關係之實證研究。資訊管理學報,第11卷第1期。頁167-194。
    連結:
  4. Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In Acm sigmod record (Vol. 22, No. 2, pp. 207-216). ACM.
    連結:
  5. Armstrong, A., & Hagel, J. (2000). The real value of online communities. Knowledge and communities, 74(3), 85-95.
    連結:
  6. Chen, T. Y., & Huang, J. H. (2013). Application of data mining in a global optimization algorithm. Advances in Engineering Software, 66, 24-33.
    連結:
  7. Coenen, F., Goulbourne, G., & Leng, P. (2004). Tree structures for mining association rules. Data Mining and Knowledge Discovery, 8(1), 25-51.
    連結:
  8. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
    連結:
  9. Fayyad, U., & Stolorz, P. (1997). Data mining and KDD: Promise and challenges. Future generation computer systems, 13(2-3), 99-115.
    連結:
  10. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
    連結:
  11. Häubl, G., & Murray, K. B. (2006). Double agents: assessing the role of electronic product recommendation systems. Sloan Management Review, 47(3), 8-12.
    連結:
  12. Hofacker, C. F., Malthouse, E. C., & Sultan, F. (2016). Big data and consumer behavior: Imminent opportunities. Journal of Consumer Marketing, 33(2), 89-97.
    連結:
  13. Hui, S. C., & Jha, G. (2000). Data mining for customer service support. Information & Management, 38(1), 1-13.
    連結:
  14. Hung, L. P. (2005). A personalized recommendation system based on product taxonomy for one-to-one marketing online. Expert systems with applications, 29(2), 383-392.
    連結:
  15. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68.
    連結:
  16. Kouris, I. N., Makris, C. H., & Tsakalidis, A. K. (2005). Using information retrieval techniques for supporting data mining. Data & Knowledge Engineering, 52(3), 353-383.
    連結:
  17. Padmanabhan, B., & Tuzhilin, A. (2002). Knowledge refinement based on the discovery of unexpected patterns in data mining. Decision Support Systems, 33(3), 309-321.
    連結:
  18. Piatetsky, G. (1991). Knowledge discovery in database: An overview. Knowledge Discovery in Database.
    連結:
  19. Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook (pp. 1-35). springer US.
    連結:
  20. Toroslu, I. H., & Yetisgen-Yildiz, M. (2005). Data mining in deductive databases using query flocks. Expert Systems with Applications, 28(3), 395-407.
    連結:
  21. Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: use, characteristics, and impact. MIS quarterly, 31(1), 137-209.
    連結:
  22. Zhang, Z., Lin, H., Liu, K., Wu, D., Zhang, G., & Lu, J. (2013). A hybrid fuzzy-based personalized recommender system for telecom products/services. Information Sciences, 235, 117-129.
    連結:
  23. 參考文獻
  24. 一、 中文部分
  25. 尹相志(2004)。資料採礦-網際網路應用與顧客價值管理。台北:維科。
  26. 林慶德(2003)。資料庫管理與應用。台北:培生。
  27. 林建煌(2010)。行銷管理。台北市:智勝文化事業有限公司製作。
  28. 林真蒂(2015)。LINE貼圖表達情緒認知之研究。大葉大學設計暨藝術學院碩士班。彰化縣。
  29. 翁慈宗(2009)。資料探勘的發展與挑戰。科學發展期刊(442),34-37。
  30. 張秩綱(2013)。影響社群媒體持續使用意圖之研究-以國內航空公司粉絲專頁為例。逢甲大學運輸科技與管理學系研究所。台中市。
  31. 廖述賢、溫志皓(2012)。資料探勘理論與應用:以IBM SPSS modeler為範例。新北市:博碩文化股份有限公司。
  32. 廖述賢(2007)。知識管理。台北市:雙葉書廊有限公司。
  33. 蔡碧鳳(2003)。策略創意軌迹之探討。國立清華大學科技管理研究所碩士班學位論文。新竹市。
  34. 二、 英文部分
  35. Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc..
  36. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data mining: from concept to implementation. Prentice-Hall, Inc..
  37. Frawley, W. J. (1991). Knowledge discovery in databases (Vol. 37). W. J. Frawley, & G. Piatetsky-Shapiro (Eds.). Menlo Park, CA: AAAI Press.
  38. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
  39. Hoffer, J. A., George, J. F., & Valacich, J. S. (2002). Modem Systems Analysis and Design Pearson Prentice Hall.
  40. Markham, S. K., Kowolenko, M., & Michaelis, T. L. (2015). Unstructured text analytics to support new product development decisions. Research-Technology Management, 58(2), 30-39.
  41. Middleton, S. E. (2002). Interface agents: A review of the field. arXiv preprint cs/0203012.
  42. Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002, January). Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces (pp. 127-134). ACM.
  43. Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
  44. Schafer, J. B., Konstan J. A. & Ried, J. (2001). E-commerce recommendation applications. Applications of data mining to electronic commerce, 5(1-2), 115-153.
  45. Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. In Applications of Data Mining to Electronic Commerce (pp. 115-153). Springer US.
  46. Srikant, R., Vu, Q., & Agrawal, R. (1997, August). Mining association rules with item constraints. In KDD (Vol. 97, pp. 67-73).
  47. 三、 網路資料
  48. 看雜誌(2012年7月) 。「App LINE爆紅崛起」。賴宛琳撰文,2017年4月18日,取自:
  49. https://www.watchinese.com/article/2012/4402
  50. 數位時代(2016年10月)。「1,700萬台灣人都在用!三張圖看LINE的使用者分析」。2017年4月18日,取自: https://www.bnext.com.tw/article/41433/line-user-in-taiwan-is-more-than-90-percent
  51. INSIDE(2016年12月)。「LINE 怎麼成為全球最賺錢的 App 之一」。2017年4月18日,取自: https://www.inside.com.tw/2016/12/12/how-did-line-become-one-of-the-apps-that-earn-most-money