参考文献
|
-
1. Alshenqeeti, H. (2016). Are Emojis Creating a New or Old Visual Language for New Generations? A Socio-semiotic Study. Advances in Language and Literary Studies, 7(6), 56-69.
連結:
-
5. Chen, W., Cheng, S., He, X., & Jiang, F. (2012, November). Influencerank: An efficient social influence measurement for millions of users in microblog. In Cloud and Green Computing (CGC), 2012 Second International Conference on (pp. 563-570). IEEE.
連結:
-
7. Francalanci, Chiara, and Ajaz Hussain. "Influence-based Twitter browsing with NavigTweet." Information Systems 64 (2017): 119-131.
連結:
-
9. Kavanagh, B. (2016). Emoticons as a medium for channeling politeness within American and Japanese online blogging communities. Language & Communication, 48, 53-65.
連結:
-
12. Lahuerta-Otero, E., & Cordero-Gutiérrez, R. (2016). Looking for the perfect tweet. The use of data mining techniques to find influencers on twitter. Computers in Human Behavior, 64, 575-583.
連結:
-
14. Munger, T., & Zhao, J. (2015, August). Identifying influential users in on-line support forums using topical expertise and social network analysis. In 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 721-728). IEEE.
連結:
-
16. Miller, H., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., & Hecht, B. (2016). “Blissfully happy” or “ready to fight”: Varying Interpretations of Emoji. ICWSM’16.
連結:
-
17. Moschini, I. (2016). The" Face with Tears of Joy" Emoji. A Socio-Semiotic and Multimodal Insight into a Japan-America Mash-Up. HERMES-Journal of Language and Communication in Business, (55), 11-25.
連結:
-
22. Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14-46.
連結:
-
25. Settanni, M., & Marengo, D. (2015). Sharing feelings online: studying emotional well-being via automated text analysis of Facebook posts. Frontiers in psychology, 6.
連結:
-
27. Skiba, D. J. (2016). Face with Tears of Joy Is Word of the Year: Are Emoji a Sign of Things to Come in Health Care?. Nursing education perspectives, 37(1), 56-57.
連結:
-
29. Stieglitz, S., & Dang-Xuan, L. (2012, January). Political communication and influence through microblogging--An empirical analysis of sentiment in Twitter messages and retweet behavior. In System Science (HICSS), 2012 45th Hawaii International Conference on (pp. 3500-3509). IEEE.
連結:
-
33. Wang, H., Lei, K., & Xu, K. (2015, June). Profiling the followers of the most influential and verified users on Sina Weibo. In 2015 IEEE International Conference on Communications (ICC) (pp. 1158-1163). IEEE.
連結:
-
34. Wu, F., Huang, Y., Song, Y., & Liu, S. (2016). Towards building a high-quality microblog-specific Chinese sentiment lexicon. Decision Support Systems.
連結:
-
38. Zhao, W. X., Liu, J., He, Y., Lin, C. Y., & Wen, J. R. (2014, August). A computational approach to measuring the correlation between expertise and social media influence for celebrities on microblogs. In Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on (pp. 460-463). IEEE.
連結:
-
6. Internet Live Stats
連結:
-
12. Oxford Dictionaries(2015)Word of the Year 2015 is…
連結:
-
英文部分
-
2. Alp, Z. Z., & Öğüdücü, Ş. G. (2016, November). Influential user detection on Twitter: Analyzing effect of focus rate. In Advances in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International Conference on (pp. 1321-1328). IEEE.
-
3. Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011, February). Everyone's an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 65-74). ACM.
-
4. Bhargav, M., & Bhargav, A. (2014, July). Mining relationships from text in social networking sites. In Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014 International Conference on (pp. 31-35). IEEE.
-
6. Cui, A., Zhang, M., Liu, Y., & Ma, S. (2011, December). Emotion tokens: Bridging the gap among multilingual twitter sentiment analysis. In Asia Information Retrieval Symposium (pp. 238-249). Springer Berlin Heidelberg.
-
8. Hill, S., Benton, A., Ungar, L., Macskassy, S., Chung, A., & Holmes, J. H. (2016). A Cluster-based Method for Isolating Influence on Twitter.
-
10. Khatua, A., Khatua, A., Ghosh, K., & Chaki, N. (2015, January). Can# Twitter_Trends Predict Election Results? Evidence from 2014 Indian General Election. In System Sciences (HICSS), 2015 48th Hawaii International Conference on (pp. 1676-1685). IEEE.
-
11. Komrsková, Z. (2015). The Use of Emoticons in Polite Phrases of Greeting and Thanks. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(4), 1309-1312.
-
13. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.
-
15. Mittal, S., Goel, A., & Jain, R. (2016, October). Sentiment analysis of E-commerce and social networking sites. In Computing for Sustainable Global Development (INDIACom), 2016 3rd International Conference on (pp. 2300-2305). IEEE.
-
18. Naveed, N., Gottron, T., Kunegis, J., & Alhadi, A. C. (2011, June). Bad news travel fast: A content-based analysis of interestingness on twitter. In Proceedings of the 3rd International Web Science Conference (p. 8). ACM.
-
19. Niu, T., Zhu, S., Pang, L., & El Saddik, A. (2016, January). Sentiment analysis on multi-view social data. In International Conference on Multimedia Modeling (pp. 15-27). Springer International Publishing.
-
20. Novak, P. K., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of emojis. PloS one, 10(12), e0144296.
-
21. Pavalanathan, U., & Eisenstein, J. (2015). Emoticons vs. emojis on Twitter: A causal inference approach. arXiv preprint arXiv:1510.08480.
-
23. Romero, D. M., Galuba, W., Asur, S., & Huberman, B. A. (2011, September). Influence and passivity in social media. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 18-33). Springer Berlin Heidelberg.
-
24. Roy, S. D., & Zeng, W. (2014, July). Influence of social media on performance of movies. In Multimedia and Expo Workshops (ICMEW), 2014 IEEE International Conference on (pp. 1-6). IEEE.
-
26. Severyn, A., Moschitti, A., Uryupina, O., Plank, B., & Filippova, K. (2016). Multi-lingual opinion mining on youtube. Information Processing & Management, 52(1), 46-60.
-
28. Smailović, J., Kranjc, J., Grčar, M., Žnidaršič, M., & Mozetič, I. (2015, October). Monitoring the Twitter sentiment during the Bulgarian elections. In Data Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on (pp. 1-10). IEEE.
-
30. Soranaka, K., & Matsushita, M. (2012, November). Relationship between emotional words and emoticons in tweets. In 2012 Conference on Technologies and Applications of Artificial Intelligence (pp. 262-265). IEEE.
-
31. Tauch, C., & Kanjo, E. (2016, September). The roles of emojis in mobile phone notifications. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 1560-1565). ACM.
-
32. Wang, H., & Castanon, J. A. (2015, October). Sentiment expression via emoticons on social media. In Big Data (Big Data), 2015 IEEE International Conference on (pp. 2404-2408). IEEE.
-
35. Ye, S., & Wu, S. F. (2010, October). Measuring message propagation and social influence on Twitter. com. In International Conference on Social Informatics (pp. 216-231). Springer Berlin Heidelberg.
-
36. Yeole, A. V., Chavan, P. V., & Nikose, M. C. (2015, March). Opinion mining for emotions determination. In Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015 International Conference on (pp. 1-5). IEEE.
-
37. Yuan, Z., & Purver, M. (2015). Predicting emotion labels for chinese microblog texts. In Advances in Social Media Analysis (pp. 129-149). Springer International Publishing.
-
39. Ali, A., & Chan, E. C. (2016). The Key to Coaching. Learning, Application and Practice. Lulu. com.
-
40. Fiske, J., & 張錦華. (1995). 傳播符號學理論. 台北: 遠流, 62-63.
-
網站部分
-
1. http://www.business2community.com/social-media/social-media-growth-statistics-01545217#qXFAbHMgZeAMJHKH.97
-
2. Jonny Rosen( 2016,May)Social Media Growth Statistics. Business2Community
-
3. https://engineering.instagram.com/emojineering-part-1-machine-learning-for-emoji-trendsmachine-learning-for-emoji-trends-7f5f9cb979ad#.5tk4k1b7a
-
4. Instagram Engineering(2015, May)Emojineering Part 1: Machine Learning for Emoji Trends.
-
5. http://www.internetlivestats.com/internet-users/#sources
-
7. http://marketingland.com/facebook-usage-accounts-1-5-minutes-spent-mobile-171561
-
8. Greg Sterling ( 2016,April ) Nearly 80 percent of social media time now spent on mobile devices. Marketing Land
-
9. https://www.appboy.com/blog/emojis-used-in-777-more-campaigns/
-
10. Jesse Tao(2016,March)EMOJIS ARE NOW USED IN 777% MORE CAMPAIGNS THAN LAST YEAR
-
11. http://blog.oxforddictionaries.com/2015/11/word-of-the-year-2015-emoji/
|