题名

具風險考量之距離基礎多階段多準則決策模型之研究 ─ 全球基金績效評比之應用

并列篇名

A Study on Distance-based Multi-stage MCDM Models with Risk Consideration : An Applications to Global Fund Evaluation

DOI

10.6846/TKU.2016.00928

作者

闞敏真

关键词

展望理論 ; TOPSIS ; 全球基金 ; 夏普指標 ; 打擊率 ; 多階段決策 ; 統計檢定 ; 敏感度分析 ; 模擬分析 ; Prospect Theory ; TOPSIS ; Global Fund ; Sharpe index ; Batting rate ; Multi-stage MCDM ; Spearman test ; Sensitivity Analysis ; Simulation

期刊名称

淡江大學管理科學學系碩士班學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

時序時

内容语文

繁體中文

中文摘要

本研究以展望理論中之價值函數概念修改TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)模型,進而發展出具風險行為考量之兩類似距離為基礎之多階段多準則決策模型,並以台灣不同期間之全球型基金為研究案例,進行基金績效評估。 本研究利用TOPSIS中之距離函數概念,更換為展望理論中之S型價值函數,並以正反理想解PIS及NIS為參考點,以發展出具風險偏好之TOPSIS模型。接續以考量利得減去損失之淨利得概念,建構另一模型。為了解基金之長期績效,本研究實測2015年及2008年金融海嘯期間之全球基金資料,並運用打擊率及夏普指標,了解不同模型的績效表現。再使用統計檢定不同模型間之相關性,以及對權重進行敏感度分析與模擬分析,比較三種模型 (TOPSIS模型、具風險偏好之TOPSIS模型、距離基礎的淨利得模型) 之績效差異。 分析結果顯示,兩修改模型於月投資時在波動大的金融海嘯時期,表現明顯優於TOPSIS模型;而TOPSIS模型在月投資時,則適合波動小的一般時期。相較於月投資之基金績效表現,其季投資所得出之結果與月投資相反,且勝率較月投資高,為應應一般時期更有效的基金績效評比,三種模型更適用於季投資方式,其中兩修改模型表現優於TOPSIS模型。經統計檢定得知,兩修改模型之排序結果與TOPSIS模型相似,表示此三者具相同特性。另在敏感度分析與模擬分析中可看出,兩修改模型對權重的變化相當穩定。經以上分析可知,本研究所建構之模型具實務價值,適用於變動劇烈的金融市場上,能提供投資者決策之依據。

英文摘要

This study aims to improve the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model which is based on S-sharped value function in prospect theory, in order to establish two Distance-based Multi-stage MCDM Models included risk consideration. Examples of Global Fund are evaluated by two types of periods purchased in Taiwan. The study uses the concept of Distance-based in TOPSIS, transferring the S-sharped value function in prospect theory. To consider risk preference in TOPSIS, we employ PIS (positive ideal solution) and NIS (negative ideal solution) as two reference for gains and losses in the modified TOPSIS. Furthermore, we build another model which utilize the concept of net gain. In the direction of realizing the long-term fund performance, we take research data as Global Fund in the years of 2015 normal time and 2008 financial crisis. Then we use batting rate and Sharpe index to test fund performance in different periods, and in these three models (TOPSIS model, distance-based risk TOPSIS model, distance-based net gain model). We test correlation of three models, and compare them by adjusting weight criteria, such as sensitivity analysis and simulation. As a result the two modified models are more adequate in 2008 financial crisis case than TOPSIS model; however, TOPSIS model is fitted in 2015 normal time by month investment. Although the result in season investment is contrary to month investment, the performance in season investment is better than month investment. For effective investing funds in normal time, season investment is suitable for three methods to evaluate funds performances; especially, two modified models are better than TOPSIS model. Spearman test shows that the ranking of two modified models are correlated with TOPSIS model. Sensitivity analysis and simulation specify that two modified models are more stable when weight criteria changed. Through the study, the two modified models are regarded as practical tool and can be used in today’s financial market. It is effective for decision making to deal with fluctuation data.

主题分类 商管學院 > 管理科學學系碩士班
社會科學 > 管理學
参考文献
  1. 王若竹 (2014),「台灣共同基金投資人處分效果之研究」,臺北科技大學經營管理系碩士班學位論文,台北。
    連結:
  2. 林哲鵬 (2013) 當代投資學,華泰文化,台北。
    連結:
  3. Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53(10), 1659-1674.
    連結:
  4. Ajukumar, V. N., & Gandhi, O. P. (2013). Evaluation of green maintenance initiatives in design and development of mechanical systems using an integrated approach. Journal of Cleaner Production, 51, 34-46.
    連結:
  5. Alimi, A., Zandieh, M., & Amiri, M. (2012). Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory. International Journal of Industrial Engineering Computations, 3(5), 859-872.
    連結:
  6. Anderson, N. H., & Shanteau, J. C. (1970). Information integration in risky decision making. Journal of Experimental Psychology, 84(3), 441–451.
    連結:
  7. Babalos, V., Philippas, N., Doumpos, M., & Zopounidis, C. (2012). Mutual funds performance appraisal using stochastic multicriteria acceptability analysis. Applied Mathematics and Computation, 218(9), 5693-5703.
    連結:
  8. Beckwith, N. E., & Lehmann, D. R. (1973). The importance of differential weights in multiple attribute models of consumer attitude. Journal of Marketing Research, 141-145.
    連結:
  9. Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069.
    連結:
  10. Belenson, S. M., & Kapur, K. C. (1973). An algorithm for solving multicriterion linear programming problems with examples. Journal of the Operational Research Society, 24(1), 65-77.
    連結:
  11. Blake, C. R., & Morey, M. R. (2000). Morningstar ratings and mutual fund performance. Journal of Financial and Quantitative Analysis, 35(03), 451-483.
    連結:
  12. Bonnin, M., Azzaro-Pantel, C., Domenech, S., & Villeneuve, J. (2015). Multicriteria optimization of copper scrap management strategy. Resources, Conservation and Recycling, 99, 48-62.
    連結:
  13. Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: a review of recent advances. European Journal of Operational Research, 248(3), 869-887.
    連結:
  14. Brans, J., & Vincke, P. (1985). A preference ranking organisation method: The PROMETHEE method forMCDM. Management Science, 31(6), 647-656.
    連結:
  15. Büyüközkan, G., Feyzioğlu, O., & Nebol, E. (2008). Selection of the strategic alliance partner in logistics value chain. International Journal of Production Economics, 113(1), 148-158.
    連結:
  16. Cebi, S. (2013). Determining importance degrees of website design parameters based on interactions and types of websites. Decision Support Systems, 54(2), 1030-1043.
    連結:
  17. Chang, C. -H., Lin, J. -J., Lin, J. -H., & Chiang, M. -C. (2010). Domestic open-end equity mutual fund performance evaluation using extended TOPSIS method with different distance approaches. Expert Systems with Applications, 37(6), 4642-4649.
    連結:
  18. Chen, S. -J., & Hwang, C. -L. (1992). Fuzzy multiple attribute decision making: Methods and applications. Berlin: Springer-Verlag.
    連結:
  19. Cuia, C., Xua, S., Huanga, B., & Denga, Y. (2013). An Effective Method to Route Selection Based on TOPSIS and Amoeba Algorithm under Uncertain Environment. Journal of Information & Computational Science, 5365–5372.
    連結:
  20. Dahlquist, M., Engström, S., & Söderlind, P. (2000). Performance and characteristics of Swedish mutual funds. Journal of Financial and Quantitative Analysis, 35(03), 409-423.
    連結:
  21. Das, P. K., & Uma Rao, S. P. (2013). Performance evaluation of socially responsible mutual funds using style analysis. Social Responsibility Journal, 9(1), 109-123.
    連結:
  22. Dedania, H.V., Shah, V.R. and Sanghvi, R.C. (2015) Portfolio Management: Stock Ranking by MultipleAttribute Decision Making Methods. Technology and Investment, 6, 141-150.
    連結:
  23. Del Guercio, D., & Tkac, P. A. (2008). Star power: The effect of monrningstar ratings on mutual fund flow. Journal of Financial and Quantitative Analysis, 43(04), 907-936.
    連結:
  24. Doukas, H., & Psarras, J. (2009). A linguistic decision support model towards the promotion of renewable energy. Energy Sources, Part B, 4(2), 166-178.
    連結:
  25. Du, Y., Gao, C., Hu, Y., Mahadevan, S., & Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on TOPSIS. Physica A: Statistical Mechanics and its Applications, 399, 57-69.
    連結:
  26. Eskandari, H., Riyahifard, M., Khosravi, S., & Geiger, C. D. (2011). Improving the emergency department performance using simulation and MCDM methods. Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, 2011, 1211-1222.
    連結:
  27. Fischer, G. W. (1995). Range sensitivity of attribute weights in multiattribute value models. Organizational Behavior and Human Decision Processes, 62(3), 252-266.
    連結:
  28. Foran, J., & O'Sullivan, N. (2014). Liquidity risk and the performance of UK mutual funds. International Review of Financial Analysis, 35, 178-189.
    連結:
  29. Gamberini, R., Grassi, A., & Rimini, B. (2006). A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. International Journal of Production Economics, 102(2), 226-243.
    連結:
  30. Hammond, K. R., McClelland, G. H., & Mumpower, J. (1980). Human judgment and decision making: Theories, methods, and procedures. New York: Praeger.
    連結:
  31. Hwang, C. L., & Yoon, K. P. (1981). Multiple attribute decision making: Methods and applications. New York: Springer-Verlag.
    連結:
  32. Jajimoggala, S., Kesava Rao, V. V. S., & Beela, S. (2011). Supplier evaluation using hybrid multiple criteria decision making approach. International Journal of Applied Decision Sciences, 4(3), 260-279.
    連結:
  33. Jarrow, R., & Protter, P. (2013). Positive alphas, abnormal performance, and illusory arbitrage. Mathematical Finance, 23(1), 39-56.
    連結:
  34. Jensen, M. C. (1968). The performance of mutual funds in the period 1945–1964. The Journal of finance, 23(2), 389-416.
    連結:
  35. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47, 263-292.
    連結:
  36. Karoui, A., & Meier, I. (2009). Performance and characteristics of mutual fund starts. The European Journal of Finance, 15(5-6), 487-509.
    連結:
  37. Lai, V. S., Wong, B. K., & Cheung, W. (2002). Group decision making in a multiple criteria environment: A case using the AHP in software selection. European Journal of Operational Research, 137(1), 134-144.
    連結:
  38. Langroudi, M. Z. A., Emrouznejad, A., Mustafa, A., & Ignatius, J. (2013). Type-2 TOPSIS: a group decision problem when ideal values are not extreme endpoints. Group Decision and Negotiation, 22(5), 851-866.
    連結:
  39. Matallín‐Sáez, J. C. (2006). Seasonality, market timing and performance amongst benchmarks and mutual fund evaluation. Journal of Business Finance & Accounting, 33(9‐10), 1484-1507.
    連結:
  40. Moneta, F. (2015). Measuring bond mutual fund performance with portfolio characteristics. Journal of Empirical Finance, 33, 223-242.
    連結:
  41. Morey, M. R. (2003). Kiss of Death: A 5-Star Morningstar Mutual Fund Rating? Available at SSRN 455240.
    連結:
  42. Müller, S., & Weber, M. (2014). Evaluating the Rating of Stiftung Warentest: How Good Are Mutual Fund Ratings and Can They Be Improved? European Financial Management, 20(2), 207-235.
    連結:
  43. Mulliner, E., Malys, N., & Maliene, V. (2016). Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega, 59, 146-156.
    連結:
  44. Nallusamy, S., Kumar, D., Balakannan, K., & Chakraborty, P. S. (2016). MCDM Tools Application for Selection of Suppliers in Manufacturing Industries Using AHP, Fuzzy Logic and ANN. International Journal of Engineering Research in Africa, 19, 130-137.
    連結:
  45. Ngai, E. W. T. (2003). Selection of web sites for online advertising using the AHP. Information & Management, 40(4), 233-242.
    連結:
  46. Qian, M. (2011). Stale prices and the performance evaluation of mutual funds. Journal of Financial and Quantitative Analysis, 46(02), 369-394.
    連結:
  47. Sargent, R. G. (2004). Validation and verification of simulation models. Proceedings of the Simulation Conference 2004 Winter, 28.
    連結:
  48. Sepehr, A., & Zucca, C. (2012). Ranking desertification indicators using TOPSIS algorithm. Natural Hazards, 62(3), 1137-1153.
    連結:
  49. Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1), 119-138.
    連結:
  50. Shih, H. -S., Shyur, H. -J., & Lee, E. -S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7), 801-813.
    連結:
  51. Shipley, M. F., de Korvin, A., & Obid, R. (1991). A decision making model for multi-attribute problems incorporating uncertainty and bias measures. Computers & Operations Research, 18(4), 335-342.
    連結:
  52. Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., & Xu, C. (2015). Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523, 739-757.
    連結:
  53. Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business Review, 43(1), 63-75.
    連結:
  54. Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions. Journal of Business, S251-S278.
    連結:
  55. Tversky, A., Kahnman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323.
    連結:
  56. Unhapipat, S., Chen, J. Y., & Pal, N. (2016). Small Sample Inferences on the Sharpe Ratio. American Journal of Mathematical and Management Sciences, 35(2), 105-123.
    連結:
  57. Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1-29.
    連結:
  58. Vincke, P. (1986). Analysis of multicriteria decision aid in Europe. European Journal of Operational Research, 25(2), 160-168.
    連結:
  59. Wang, Y. -M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1), 1-12.
    連結:
  60. Wermers, R. (2011). Performance measurement of mutual funds, hedge funds, and institutional accounts. Annual Review of Financial Economics, 3, 537–574.
    連結:
  61. Wu, G., & Gonzalez, R. (1996). Curvature of the probability weighting function. Management Science, 42(12), 1676-1690.
    連結:
  62. Xu, H., Zhou, J., & Xu, W. (2011). A decision-making rule for modeling travelers’ route choice behavior based on cumulative prospect theory. Transportation Research Part C: Emerging Technologies, 19(2), 218-228.
    連結:
  63. Yoon, K. P., & Hwang, C. L. (1981). Multiple attribute decision making: methods and applications. New York: Springer-Verlag.
    連結:
  64. Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165-179.
    連結:
  65. Zavadskas, E. K., Turskis, Z., & Tamošaitiene, J. (2010). Risk assessment of construction projects. Journal of Civil Engineering and Management, 16(1), 33-46.
    連結:
  66. Zelany, M. (1974). A concept of compromise solutions and the method of the displaced ideal. Computers & Operations Research, 1(3), 479-496.
    連結:
  67. 中文文獻
  68. 李秋瑩 (2014),「臺灣股票型共同基金績效影響因素分析」,國立雲林科技大學財務金融系研究所碩士論文,雲林。
  69. 陳達新、周恆志 (2010) 財務風險管理:工具、衡量與未來發展,雙頁書廊,台北。
  70. 鄧振源 (2012) 多準則決策,鼎茂圖書,台北。
  71. 簡禎富 (2015) 決策分析與管理二版紫式決策分析以全面提升決策品質,雙葉書廊,台北。
  72. 顏月珠 (2010) 無母數統計方法,修訂八版,臺大法律學院圖書文具部總經銷,台北。
  73. 英文文獻
  74. Abdullah, A. R., Muhammad, M. Z., Hassan, Z., Abdullah, S. S., & Redzuan, R. H. (2013). Investors’ fortune and the role of Lipper in determining unit trusts performance differential. Proceedings of the 2nd Applied International Business Conference (AIBC2013) 7-8 December 2013.
  75. Certa, A., Enea, M., Galante, G., & Lupo, T. (2015). A Multi-Criteria Group Decision To Support The Maintenance Service: A Case Study. International Journal of Applied Engineering Research, 10(9), 22047-22055.
  76. Morey, M. R. (2002). Rating the raters: An investigation of mutual fund rating services. Journal of Investment Consulting, 5(2), 30-50.
  77. Rouwenhorst, K. G. (2004). The Origins of Mutual Funds, Yale School of Management Working Papers , Yale School of Management.
  78. Russel, P. S. (2006). Do the Stars Foretell the Future: The Performance of Morning Star Ratings. Journal of American Academy of Business, 10(1), 85-89.
  79. Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making. Thousand Oaks, CA: Sage Publication.