题名

探討腺苷對人類慢性骨髓癌細胞K562的抗癌機制

并列篇名

Investigating anti-tumoral activity of adenine on human chronic myelogenous leukemia cell K-562

作者

陳怡吟

关键词

腺苷人類慢性骨髓癌細胞 ; K562 ; adenine ; human chronic myelogenous leukemia ; K-562

期刊名称

中山醫學大學生化微生物免疫研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

高紹軒

内容语文

繁體中文

中文摘要

近年來逐漸重視從天然物萃取出有效成分,尋找對抗癌症或延緩癌症的方法。毛竹水萃物的成分之一: 腺苷(adenine)已被證實為單磷酸腺苷-活化蛋白質激酶(AMPK)的活化劑。 AMPK是細胞代謝的主要調控因子,過去許多的研究中指出, AMPK會影響細胞內許多訊息傳遞路徑並參與多項生理機制的調控,透過活化AMPK的方式可以治療代謝以及發炎相關的疾病,也證實可以抑制癌細胞的生長。 因此,本論文進一步探討adenine對於人類慢性骨髓性白血病(Chronic myelogenous leukemia, CML) K562 細胞是否具有抗癌作用及其作用機轉。實驗結果顯示,使用adenine處理後 K562 細胞的存活率下降,形態發生改變。經由流式細胞儀的分析結果發現,在24小時後,隨著 adenine 的濃度增加,細胞週期停滯在 G2/M 期的比例也增加。48小時後觀察到 sub-G1 期也略微上升。接著透過西方墨點法分析,發現與細胞凋亡相關的蛋白表現量皆無顯著改變。此外,透過 Acidic vesicular organelle (AVO)染色發現此一autophagy marker在adenine處理後有增加的趨勢。推測 adenine 抑制人類慢性骨髓性血癌細胞株 K562 細胞的主要作用,可能是促使其細胞週期停滯與進入 autophagy 的程序。而這一連串的反應機制,確實是經由 AMPK 活化所導致。藉由使用 AMPK 的活性抑制劑 Compound C預處理後,原本因為 adenine 而增加表現的蛋白,都明顯的受到了抑制。綜合以上結果顯示, adenine 可促使人類慢性骨髓性白血病細胞生長受到抑制並且走向 autophagy ,期許其未來對於應用於白血病的治療和藥物研發具有潛在的可行性。

英文摘要

Plant-derived phytochemicals have been used as therapeutic agents for hundreds of years. Natural products from plants and other species have been proven to be a promising resource for mining potential anticancer drugs or compounds. Previous studies have indicated that AMP-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress and activation of AMPK suppresses cell proliferation of non-malignant cells and tumor cells. The aim of this study was to investigate effects of adenine, an active compound isolated from Phyllostachys Edulis leaf extract, on human chronic myelogenous leukemia cell line K562 and further elucidate the underlying mechanisms. Cell viability analysis showed that adenine dose-dependently reduced viability of K562 by using MTT assay. Morphological analysis showed that cell morphology of K562 cells treated with adenine was significantly altered. Flow cytometric analysis showed that adenine obviously induced G2/M phase arrest as well as slightly increased of sub-G1 after 48 hours. Further immunoblotting showed that expression of apoptosis-related proteins are insignificantly influenced. In addition, adenine increased the autophagy marker by using AVO staining. The involvement of AMPK activation in the adenine-induced cellular responses was also demonstrated by using AMPK inhibitor compound c. In conclusion, our findings indicate that viability suppressive effect of adenine on K562 cells may attribute to induction of G2/M arrest and autophagy via activation of AMPK. It suggests that adenine should be beneficial to chronic myelogenous leukemia treatment.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 生化微生物免疫研究所
参考文献
  1. 3. Zhang, L., Sankaran, V. G., and Lodish, H. F. (2012) MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia 26, 2310-2316
    連結:
  2. 4. Adams, D. H., and Lloyd, A. R. (1997) Chemokines: leucocyte recruitment and activation cytokines. Lancet 349, 490-495
    連結:
  3. 5. Ketley, N. J., and Newland, A. C. (1997) Haemopoietic growth factors. Postgraduate medical journal 73, 215-221
    連結:
  4. 6. Hamilton, J. A. (2008) Colony-stimulating factors in inflammation and autoimmunity. Nature reviews. Immunology 8, 533-544
    連結:
  5. 7. Savona, M., and Talpaz, M. (2008) Getting to the stem of chronic myeloid leukaemia. Nature reviews. Cancer 8, 341-350
    連結:
  6. 8. Huang, S. Y., Yao, M., Tang, J. L., Lee, W. C., Tsay, W., Cheng, A. L., Wang, C. H., Chen, Y. C., Shen, M. C., and Tien, H. F. (2007) Epidemiology of multiple myeloma in Taiwan: increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer 110, 896-905
    連結:
  7. 11. Tenen, D. G. (2003) Disruption of differentiation in human cancer: AML shows the way. Nature reviews. Cancer 3, 89-101
    連結:
  8. 12. Tanaka, R., and Kimura, S. (2008) Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315I: from the second to third generation. Expert review of anticancer therapy 8, 1387-1398
    連結:
  9. 13. 劉大智, 卓. (2013) 慢性骨髓性白血病之進步- 治療及疾病監測. 內科學誌  2013:24:399-407
    連結:
  10. 16. Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell proliferation 36, 131-149
    連結:
  11. 17. Tashima, Y., Hamada, H., Okamoto, M., and Hanai, T. (2008) Prediction of key factor controlling G1/S phase in the mammalian cell cycle using system analysis. Journal of bioscience and bioengineering 106, 368-374
    連結:
  12. 18. Smith, M. L., and Fornace, A. J., Jr. (1996) Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutation research 340, 109-124
    連結:
  13. 19. Delaval, B., and Birnbaum, D. (2007) A cell cycle hypothesis of cooperative oncogenesis (Review). International journal of oncology 30, 1051-1058
    連結:
  14. 20. Sanchez, I., and Dynlacht, B. D. (2005) New insights into cyclins, CDKs, and cell cycle control. Seminars in cell & developmental biology 16, 311-321
    連結:
  15. 21. Shanmugasundaram, K., Block, K., Nayak, B. K., Livi, C. B., Venkatachalam, M. A., and Sudarshan, S. (2013) PI3K regulation of the SKP-2/p27 axis through mTORC2. Oncogene 32, 2027-2036
    連結:
  16. 22. Seino, J., Wang, L., Harada, Y., Huang, C., Ishii, K., Mizushima, N., and Suzuki, T. (2013) Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. The Journal of biological chemistry 288, 26898-26907
    連結:
  17. 23. Hale, A. N., Ledbetter, D. J., Gawriluk, T. R., and Rucker, E. B., 3rd. (2013) Autophagy: regulation and role in development. Autophagy 9, 951-972
    連結:
  18. 26. Ravikumar, B., Duden, R., and Rubinsztein, D. C. (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human molecular genetics 11, 1107-1117
    連結:
  19. 28. Nilsson, P., Loganathan, K., Sekiguchi, M., Matsuba, Y., Hui, K., Tsubuki, S., Tanaka, M., Iwata, N., Saito, T., and Saido, T. C. (2013) Abeta secretion and plaque formation depend on autophagy. Cell reports 5, 61-69
    連結:
  20. 30. Kimura, T., Takabatake, Y., Takahashi, A., and Isaka, Y. (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer research 73, 3-7
    連結:
  21. 32. Rosenfeld, M. R., Ye, X., Supko, J. G., Desideri, S., Grossman, S. A., Brem, S., Mikkelson, T., Wang, D., Chang, Y. C., Hu, J., McAfee, Q., Fisher, J., Troxel, A. B., Piao, S., Heitjan, D. F., Tan, K. S., Pontiggia, L., O'Dwyer, P. J., Davis, L. E., and Amaravadi, R. K. (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359-1368
    連結:
  22. 33. Maycotte, P., Aryal, S., Cummings, C. T., Thorburn, J., Morgan, M. J., and Thorburn, A. (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8, 200-212
    連結:
  23. 34. Chen, K. L., Chang, W. S., Cheung, C. H., Lin, C. C., Huang, C. C., Yang, Y. N., Kuo, C. P., Kuo, C. C., Chang, Y. H., Liu, K. J., Wu, C. M., and Chang, J. Y. (2012) Targeting cathepsin S induces tumor cell autophagy via the EGFR-ERK signaling pathway. Cancer letters 317, 89-98
    連結:
  24. 35. Williams, G. T., and Smith, C. A. (1993) Molecular regulation of apoptosis: genetic controls on cell death. Cell 74, 777-779
    連結:
  25. 36. Hardie, D. G., Scott, J. W., Pan, D. A., and Hudson, E. R. (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS letters 546, 113-120
    連結:
  26. 39. Beauloye, C., Bertrand, L., Horman, S., and Hue, L. (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovascular research 90, 224-233
    連結:
  27. 40. Carling, D., Mayer, F. V., Sanders, M. J., and Gamblin, S. J. (2011) AMP-activated protein kinase: nature's energy sensor. Nature chemical biology 7, 512-518
    連結:
  28. 41. Zhang, B. L., Xu, R. L., Zhang, J., Zhao, X. X., Wu, H., Ma, L. P., Hu, J. Q., Zhang, J. L., Ye, Z., Zheng, X., and Qin, Y. W. (2013) Identification and functional analysis of a novel PRKAG2 mutation responsible for Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS domains in regulating the AMPK pathway. Journal of cardiology 62, 241-248
    連結:
  29. 42. Shieh, J. M., Chen, Y. C., Lin, Y. C., Lin, J. N., Chen, W. C., Chen, Y. Y., Ho, C. T., and Way, T. D. (2013) Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells. Journal of agricultural and food chemistry 61, 6366-6375
    連結:
  30. 43. Brown, K. A., Samarajeewa, N. U., and Simpson, E. R. (2013) Endocrine-related cancers and the role of AMPK. Molecular and cellular endocrinology 366, 170-179
    連結:
  31. 44. Motoshima, H., Goldstein, B. J., Igata, M., and Araki, E. (2006) AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. The Journal of physiology 574, 63-71
    連結:
  32. 45. Schimmack, G., Defronzo, R. A., and Musi, N. (2006) AMP-activated protein kinase: Role in metabolism and therapeutic implications. Diabetes, obesity & metabolism 8, 591-602
    連結:
  33. 46. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A., and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America 101, 3329-3335
    連結:
  34. 48. Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., and Hardie, D. G. (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell metabolism 2, 9-19
    連結:
  35. 49. Jeon, S. M., Chandel, N. S., and Hay, N. (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661-665
    連結:
  36. 51. He, C., Li, H., Viollet, B., Zou, M. H., and Xie, Z. (2015) AMPK Suppresses Vascular Inflammation In Vivo by Inhibiting Signal Transducer and Activator of Transcription-1. Diabetes 64, 4285-4297
    連結:
  37. 52. Hsu, J. W., Chen, K. J., and Lee, F. J. (2015) Snf1/AMP-activated protein kinase activates Arf3p to promote invasive yeast growth via a non-canonical GEF domain. Nature communications 6, 7840
    連結:
  38. 53. Woodard, J., Joshi, S., Viollet, B., Hay, N., and Platanias, L. C. (2010) AMPK as a therapeutic target in renal cell carcinoma. Cancer biology & therapy 10, 1168-1177
    連結:
  39. 54. Yang, Z., Wang, X., He, Y., Qi, L., Yu, L., Xue, B., and Shi, H. (2012) The full capacity of AICAR to reduce obesity-induced inflammation and insulin resistance requires myeloid SIRT1. PloS one 7, e49935
    連結:
  40. 1. McCulloch, E. A. (1983) Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood 62, 1-13
  41. 2. Web site: http://highscope.ch.ntu.edu.tw/wordpress/?p=57136
  42. 9. Inaba, T. (2009) [Radiation-induced and therapy-related AML/MDS]. Nihon rinsho. Japanese journal of clinical medicine 67, 1880-1883
  43. 10. Dohner, H., Estey, E. H., Amadori, S., Appelbaum, F. R., Buchner, T., Burnett, A. K., Dombret, H., Fenaux, P., Grimwade, D., Larson, R. A., Lo-Coco, F., Naoe, T., Niederwieser, D., Ossenkoppele, G. J., Sanz, M. A., Sierra, J., Tallman, M. S., Lowenberg, B., Bloomfield, C. D., and European, L. (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115, 453-474
  44. 14. Silver, R. T., Woolf, S. H., Hehlmann, R., Appelbaum, F. R., Anderson, J., Bennett, C., Goldman, J. M., Guilhot, F., Kantarjian, H. M., Lichtin, A. E., Talpaz, M., and Tura, S. (1999) An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 94, 1517-1536
  45. 15. Hansen, J. A., Gooley, T. A., Martin, P. J., Appelbaum, F., Chauncey, T. R., Clift, R. A., Petersdorf, E. W., Radich, J., Sanders, J. E., Storb, R. F., Sullivan, K. M., and Anasetti, C. (1998) Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. The New England journal of medicine 338, 962-968
  46. 24. Schroeder, S., Zimmermann, A., Carmona-Gutierrez, D., Eisenberg, T., Ruckenstuhl, C., Andryushkova, A., Pendl, T., Harger, A., and Madeo, F. (2014) Metabolites in aging and autophagy. Microbial Cell 1, 110-114
  47. 25. Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental cell 6, 463-477
  48. 27. Iwata, A., Christianson, J. C., Bucci, M., Ellerby, L. M., Nukina, N., Forno, L. S., and Kopito, R. R. (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proceedings of the National Academy of Sciences of the United States of America 102, 13135-13140
  49. 29. Lockshin, R. A., and Zakeri, Z. (2004) Apoptosis, autophagy, and more. The international journal of biochemistry & cell biology 36, 2405-2419
  50. 31. Livesey, K. M., Tang, D., Zeh, H. J., and Lotze, M. T. (2009) Autophagy inhibition in combination cancer treatment. Current opinion in investigational drugs 10, 1269-1279
  51. 37. Xiao, B., Sanders, M. J., Underwood, E., Heath, R., Mayer, F. V., Carmena, D., Jing, C., Walker, P. A., Eccleston, J. F., Haire, L. F., Saiu, P., Howell, S. A., Aasland, R., Martin, S. R., Carling, D., and Gamblin, S. J. (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230-233
  52. 38. Stapleton, D., Mitchelhill, K. I., Gao, G., Widmer, J., Michell, B. J., Teh, T., House, C. M., Fernandez, C. S., Cox, T., Witters, L. A., and Kemp, B. E. (1996) Mammalian AMP-activated protein kinase subfamily. The Journal of biological chemistry 271, 611-614
  53. 47. Xie, M., Zhang, D., Dyck, J. R., Li, Y., Zhang, H., Morishima, M., Mann, D. L., Taffet, G. E., Baldini, A., Khoury, D. S., and Schneider, M. D. (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proceedings of the National Academy of Sciences of the United States of America 103, 17378-17383
  54. 50. Sujobert, P., Poulain, L., Paubelle, E., Zylbersztejn, F., Grenier, A., Lambert, M., Townsend, E. C., Brusq, J. M., Nicodeme, E., Decrooqc, J., Nepstad, I., Green, A. S., Mondesir, J., Hospital, M. A., Jacque, N., Christodoulou, A., Desouza, T. A., Hermine, O., Foretz, M., Viollet, B., Lacombe, C., Mayeux, P., Weinstock, D. M., Moura, I. C., Bouscary, D., and Tamburini, J. (2015) Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell reports 11, 1446-1457