题名

工具機製造廠金屬粉塵暴露評估

并列篇名

Exposure assessment of metal dust in machine tool manufactory

作者

張裕欣

关键词

工具機 ; 金屬燻煙 ; 職業暴露 ; 中部地區 ; machine tools ; metal fumigation ; occupational exposure ; central region

期刊名称

中山醫學大學職業安全衛生學系碩士班學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

劉宏信

内容语文

繁體中文

中文摘要

工具機製造業是政府發展智慧機械製造的基礎,此類勞工於加工作業會長時間暴露在金屬粉塵及金屬燻煙的作業環境空氣中,可能導致肺部相關急性或慢性職業病,本研究目的係調查我國工具機製造相關產業之作業流程、作業模式及危害物等資訊。 本研究對象為中台灣地區工具機製造事業單位,採隨機抽樣方式,徵求三家具代表性之自願受測工具機製造廠填寫問卷,並依勞動部公告之金屬粉塵採樣方法進行環境與個人採樣分析,以感應偶合電漿原子發射光譜儀(ICP-OES)進行元素總量分析。 研究結果三家事業單位屬於第一類事業,具有顯著風險者。雇用本國男性勞工為主,分別占86.9%、83.6%及81.4%。在金屬濃度分析結果中,A家工廠主要金屬粉塵暴露成分為Al、Cr、Cu、Fe及K;B家工廠為Al、Fe、Mn、Mg及Zn;C家工廠為Cu、Fe、Mn、Ni及Zn。共同以鐵(Fe)的金屬濃度最高,在個人採樣部分:A家工廠在銑削區為4.88×10-2(mg/m3);B家工廠在精密加工區為1.86×10-2(mg/m3);C家工廠在B棟加工課為4.40×10-2(mg/m3)。在環境採樣部分:A家工廠在滾排齒區為2.47×10-2 (mg/m3) ;B家工廠在加工課為1.65×10-2 (mg/m3) ;C家工廠在D棟加工課為5.72×10-2 (mg/m3),造成這樣的情況推估與作業模式、製程材料和現場通風環境有關。由結果發現3家工廠的暴露金屬濃度符合勞動部標準,但因工廠為空調環境加上長時間作業,導致長期暴露下可能對勞工造成影響。 製造過程中極易形成各種不同型態的災害類型,影響現場作業勞工安全。因此雇主應加強作業環境局部排氣、整體換氣之改善,提供勞工適當個人防護具,進行安全衛生教育訓練並定期健康檢查追蹤。

英文摘要

Machine tool manufacturing industry is the national development of automated machinery manufacturing base, Such workers exposed to metal dust and metal fumes for long periods of time in processing operations may cause acute or chronic occupational diseases associated with the lungs, The purpose of this study is to investigate the Taiwan machine tool manufacturing industry-related processes, operating models and hazards and other information. The study was conducted in three typical machine tool plants in central Taiwan. A pre-sampling walk-through was conducted to determine the layout of each work site and its borders. In principle, the zones in the machine tool plant are based on various operational functions. Each plant was asked to fill out a questionnaire asking for information about work characteristics, operation style, and working environment, and use of protective equipment. The metal dust sampling and analysis method were following the Ministry of Labor announcement. The elemental analysis was performed by inductively coupled plasma atomic emission spectrometry (ICP-OES). The results of the three institutions are the first type of business. 86.9%, 83.6% and 81.4% native male workers are employed in the machine tool plants respectively. A factory main metal dust exposure components are Al, Cr, Cu, Fe and K; B factory are Al、Fe、Mn、Mg及Zn;C factory are Cu、Fe、Mn、Ni及Zn. All three factories have the highest metal concentrations of iron. In the personal sampling section: 4.88 ×10-2 (mg / m3) in the milling area; 1.86 ×10-2 (mg / m3) in the precision processing area; 4.40 ×10-2 (mg / m3) In the B building processing class. In the Environmental Sampling section: In the rolling row of teeth for the 2.47 ×10-2 (mg / m3);In the processing class is 1.65 ×10-2 (mg / m3); In the D building processing class is 5.72 ×10-2 (mg / m3). Result was demonstrated with the operating model, process materials and on-site ventilation environment. It was found that the concentrations of exposed metals in the three plants under the standards of the Ministry of Labor. Because the process operation in the air conditioning environment. May be has a health impact to labor in long-term exposure. Manufacturing process can easily form a variety of different types of disaster types, affecting the worker’s safety. Therefore, the employer should strengthen the local exhaust of the workplace, improve the overall ventilation, provide appropriate personal protective equipment for workers, carry out safety and health education and training and regular health checks to track.

主题分类 醫藥衛生 > 預防保健與衛生學
健康管理學院 > 職業安全衛生學系碩士班
参考文献
  1. 3. 區域競爭趨勢下工具機產業經營探討,工業技術研究院產業經濟與資訊服務中心,2004年。
    連結:
  2. 10. 2016年我國機械設備製造業分析,台灣經濟研究院產經資料庫,2016年。
    連結:
  3. 11. 2015年我國機械設備製造業分析,台灣經濟研究院產經資料庫,2015年。
    連結:
  4. 24. “Occupational exposure to aluminum and its amyloidogenic link with cognitive functions”, N.H. Zawilla, F.M. Taha, N.A. Kishk, S.A. Farahat, M. Farghaly, M. Hussein, Journal of Inorganic Biochemistry 139 (2014) 57–64.
    連結:
  5. 26. “Quantitative neuropathology associated with chronic manganese exposure in South African mine workers”, Gonzalez-Cuyar LF, Nelson G, NeuroToxicology, 45(2014), 260– 266.
    連結:
  6. 27. “Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS”, Zhuqin Hu, Toxicology and Applied Pharmacology, 276 (2014), 95–103.
    連結:
  7. 28. “An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease”, Junichi Tanaka, Hiroshi Moriyama, Masaki Terada, Toshinori Takada,Eiichi Suzuki, Ichiei Narita, Yoshinori Kawabata, Tetsuo Yamaguchi, Akira Hebisawa, Fumikazu Sakai, Hiroaki Arakawa. Tanaka J, Moriyama H, BMJ Open 2014;4:e004407. doi:10.1136/bmjopen-2013-004407
    連結:
  8. 29. “Case of interstitial lung disease possibly induced by exposure to iron dust.”, Hai-Qing Chu, Jin-Ming Liu,et al ,Heart & Lung: The Journal of Acute and Critical Care, Volume 41, Issue 2, March–April 2012, Pages 196–199.
    連結:
  9. 30. “Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer”, Toshinori Takada, Hiroshi Moriyama, Eiichi Suzuki, respiratory investigation 52 (2014) 5–13.
    連結:
  10. 31. “Semen quality of Indian welders occupationally exposed to nickel and chromium”, Danadevi K, Rozati R, Reproductive Toxicology, 17(2003), 451–456.
    連結:
  11. 32. “Measurements of ultrafine particle concentrations and size distribution in an iron foundry”, Yu-Hsiang Cheng , Yen-Chi Chao, Cheng-Han Wu, Chuen-Jinn Tsai, Shi-Nian Uang, Tung-Sheng Shih, Journal of Hazardous Materials 158 (2008) 124–130.
    連結:
  12. 33. “Ultrafine and respirable particles in an automotive grey iron foundry”, D.E. Evans, W.A. Heitbrink, T.J. Slavin, T.M. Peters, Occup. Hyg., 52 (2008), pp. 9–21.
    連結:
  13. 34. “Aluminum Welding Fume -Induced Pneumoconiosis”, MINDY J. HULL, JERROLD L. ABRAHAM,et al Human Pathology, Volume 33, Issue 8, August 2002, Pages 819–825.
    連結:
  14. 36. Danielsson BRF, Hassoun E, Dencker L. Embryotoxicity of chromium: distribution in pregent mice and effects on embryonic cells in vitro. Arch Toxicol 982;51:233-45.
    連結:
  15. 37. O’flaherty EJ. A physiologically-based models of chromium kinetics in the rat. Toxicol Appl Pharmacol 1996;138:54-64
    連結:
  16. 38. Glaser U, Hochrainer D, Kloppel H, Oldiges H. Carcinogenicity of sodium dichromate and chromium(VI/III) oxide aerosols inhaled by male Wistar rats. Toxicology 1986; 42:219-32.
    連結:
  17. 39. Davidson T, Kluz T, Burns F, Rossman T, Zhang Q, Uddin A, et al. Exposure to chromium (VI)in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice. Toxicology and Applied Pharmacology 2004;196: 431-37
    連結:
  18. 40. Glaser U, Hochrainer D, Steinhoff D. Investigation of irritating properties of inhaled Cr(VI) with possible influence on its carcinogenic action. In: Environmental Hygiene II. Seemayer, NO; Hadnagy,W, eds. Berlin/New York: Springer-Verlag;1990.
    連結:
  19. 42. Glaser U, Hochrainer D, Kloppe H, Kuhnen H. Low level chromium (VI) inhalation effects on alveolar macrophages and immune function in Wistar rats. Arch Toxicol 1985; 57:250-6
    連結:
  20. 43. Malsch PA, Proctor DM, Finley BL. Estimation of a chromium inhalation reference concentration using the benchmark dose method: a case study. Regul Toxicol Pharmacol 1994; 20:58-82.
    連結:
  21. 44. Junaid M, Mur thu RC, Saxena DK. Embryotoxicity of orally administered ch romium in mice: Exposure during the period of organogenesis. Toxicology Letters1996;84:143-8.
    連結:
  22. 45. Riihimäki V, Valkonen S, Engström B, Tossavainen A, Mutanen P, Aitio A. Behavior of aluminum in aluminum welders and manufacturers of aluminum sulfate-impact on biological monitoring. Scand J Work Environ Health. 2008; 34(6):451-462.
    連結:
  23. 49. Olivera Popović. Fume and gas emission during arc welding: Hazards and recommendation. Renewable and Sustainable Energy Reviews.
    連結:
  24. 1. 工業4.0 58秒的競爭,天下雜誌 2016年7月。
  25. 2. 車床演進史,嚴之揚、盧春生,機械月刊 27(3):470-476。
  26. 4. 自動化工業展特刊,電子時報,2015年,8月。
  27. 5. 資策會產業情報研究所-MIC,2014年6月。
  28. 6. 2015 機械產業年鑑,2015 Machinery Industry Yearbook,財團法人工業技術研究院-產業經濟與趨勢研究中心,2015年6月。
  29. 7. 2016 機械產業年鑑,2015 Machinery Industry Yearbook,財團法人工業技術研究院-產業經濟與趨勢研究中心,2016年6月。
  30. 8. 國家環境毒物研究中心-毒性物質資料庫。
  31. 9. 金屬燻煙作業勞工健康危害評估與探討,勞動部勞動及職業安全衛生研究所,2015年3月。
  32. 12. 行政院勞動部職安署機械設備製造修配業安全衛生自主管理手冊
  33. 13. 美國國家職業安全衛生研究所(NIOSH) 、勞工作業環境有害物質容許濃度 標準─空氣中有害物容許濃度表、美國職業安全衛生管理局(OSHA)
  34. 14. 工具機與零組件雜誌 Machine Tool & Accessory Magazine 2016.07 No.82
  35. 15. 行政院勞動部-職業疾病案例,編號 78002、78003。
  36. 16. 中華職業醫學雜誌 19(3):165-169, 2012
  37. 17. 行政院勞動部-2011 職業病案例彙編,第三章-職業癌症。
  38. 18. 勞工安全衛生研究季刊,民國96年6月 第15卷第2期 第105-115頁。
  39. 19. 鋁及其化合物引起之中毒及其續發症職業疾病認定參考指引。
  40. 20. 鋁燻煙暴露勞工之肺部健康危害評估研究,行政院勞工安全委員會勞工安全研究所, 2003 年。
  41. 21. 五大產業創新研發計畫智慧機械產業推動方案,經濟部,2015年7月。
  42. 22. 2015年2000大調查,天下雜誌,2015年5月。
  43. 23. 健康風險評估技術規範,行政院環保署,2011年。
  44. 25. “Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide”, Krewski, D., Yokel, R.A.,Nieboer, E., Borchelt, D., Cohen, J., Harry, J., Kacew, S., Lindsay, J., Mahfouz, A.M., Rondeau, V., Journal of Toxicology and Environmental Health - Part B: Critical Reviews,Volume 10, Issue SUPPL. 1, 2007, Pages 1-269.
  45. 35. Burge HA, Otten JA. Fungi. In: Macher J,editor. Bioaerosols: Assessment and Control.Cincinnati, OH: American Conferenceof Governmental Industrial Hygienists(ACGIH). 1999. 19-1 - 19-13.
  46. 41. MacKenzie RD, Byerrum RU, Decker CF, et al. Chronic toxicity studies Ⅱ. Hexavalent and trivalent chromium administration in drinking water to rats. Am. Med Assoc Arch Ind Health 1958;18:207-13.
  47. 46. European Commission. Information notices on occupational diseases: a guide to diagnosis. Directorate-General for Employment, Social Affairs and Equal Opportunities F4 unit Manuscript , 2009. 194-195.
  48. 47. Joseph LaDou, Current Occupational & Environmental Medicine fourth edition. LANGE. 2007. p431.
  49. 48. Lamiaa H. Shaaban. Egyptian Journal of Chest Diseases and Tuberculosis. April 2016, 537–543.