题名

結冷膠/胺化石墨烯/阿黴素微粒作為肝癌栓塞試劑之可行性評估

并列篇名

Feasibility assessment of gellan gum/ graphene-NH2/doxorubicin microspheres as embolic agent for the treatment of hepatocellular carcinoma

作者

陳虹羽

关键词

結冷膠 ; 阿黴素 ; 胺化石墨烯 ; 動脈化療栓塞 ; Gellan gum ; Doxorubicin ; Graphene-NH2 ; TACE

期刊名称

中山醫學大學醫學檢驗暨生物技術學系碩士班學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

李明偉

内容语文

繁體中文

中文摘要

在台灣的十大癌症死因中,肝癌的死亡率佔據第二名,動脈化療栓塞法是目前無法切除時的第一線肝癌治療方法。先前研究出以結冷膠為基材,加入接有阿黴素的胺化石墨烯之微粒,欲深入探討此微粒對肝癌細胞的效用。於結冷膠/胺化石墨烯三種由小至大尺寸微粒的體外釋放,胺化石墨烯的累積濃度分別為55.2 μg/ml、21.15 μg/ml和74.94μg/ml,利用計數顆粒與胺化石墨烯濃度拉出標的準曲線來計算胺化石墨烯的釋放濃度,而其釋放的動力學符合零級和Higuchi模式。用三種尺寸微粒體外釋放胺化石墨烯的累積濃度做細胞存活測試,在第二天時三種濃度的胺化石墨烯細胞存活率都有明顯的下降。用三種尺寸微粒體外釋放胺化石墨烯和阿黴素的累積濃度來觀察細胞凋亡蛋白的表現量,根據上述結果,本研究認為此微粒在體外對於肝癌細胞促使細胞凋亡的效能不錯。

英文摘要

In Taiwan, hepatic carcinoma is the second leading cause of cancer death. Transarterial chemoembolization (TACE) is the first-line treatment at present when liver cancer can’t be resection. In our previous study have made the chemoembolization microsphere (GG/Gra-NH2/DOX) composed of gellan gum (GG), graphene-NH2 (Gra-NH2) and anticancer drugs (Doxorubicin, DOX) in our laboratory. In this study, we focus on the investigation the cellular effect of the GG/Gra-NH2/DOX for HepG2 cells. The Gra-NH2 accumulated concentration of three size microspheres delivery in vitro are 55.2 μg/ml, 21.15 μg/ml and 74.94μg/ml. The standard curve was drawn using the counting Gra-NH2 particles and the concentration to calculate the delivery concentration. The pharmacokinetics of Gra-NH2 match zero order and Higuchi models. Cell viability assay had significantly decline with treated three Gra-NH2 concetration for two days. The percentage of cell apoptosis had significantly increasing with treated two Gra-NH2 concetration and three DOX concentration for one days. From these data, the GG/Gra-NH2/DOX microsphere can promote HepG2 cells apoptosis in vitro.

主题分类 醫藥衛生 > 基礎醫學
醫學科技學院 > 醫學檢驗暨生物技術學系碩士班
参考文献
  1. N. Coppola, G. Stefano, M. Panella et al. Lowered expression of microRNA-125a-5p in human hepatocellular carcinoma and up-regulation of its oncogenic targets sirtuin-7, matrix metalloproteinase-11, and c-Raf. Oncotarget 8(15): 25289-25229, 2017.
    連結:
  2. R. Dhanasekaran, S. Bandoh and L. R. Roberts. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research 5: 879, 2016.
    連結:
  3. G. Li, G. Cai, D. Li and W. Yin. MicroRNAs and liver disease: viral hepatitis, liver fibrosis and hepatocellular carcinoma. Postgrad Med J 90: 106–112, 2014.
    連結:
  4. A. O. Abdelaziz, A. H. Abdelmaksoud, M. M. Nabil et al. Transarterial Chemoembolization Combined with Either Radiofrequency or Microwave Ablation in Management of Hepatocellular Carcinoma. Asian Pacific Journal of Cancer Prevention 18: 189-195, 2017.
    連結:
  5. X. Zhu, W. Liu, X. Qiu et al. Single nucleotide polymorphisms in MLH1 predict poor prognosis of hepatocellular carcinoma in a Chinese population. Oncotarget, 2017.
    連結:
  6. M.-W. welker and J. Trojan. Antiangiogenic treatment in hepatocellular carcinoma: the balance of efficacy and safety. Cancer Management and Research 5: 337-347, 2013.
    連結:
  7. X. Zhang and Q. Long. Elevated serum plasma fibrinogen is associated with advanced tumor stage and poor survival in hepatocellular carcinoma patients. Medicine 96: 17-23, 2017.
    連結:
  8. R. Wong and C. Frenette. Updates in the Management of Hepatocellular Carcinoma. Gastroenterology & Hepatology 7(1): 16-24, 2011.
    連結:
  9. S. B. Paul and H. Sharma. Role of Transcatheter Intra-arterial Therapies for Hepatocellular Carcinoma. Journal of Clinical and Experimental Hepatology 4: 112-121, 2014.
    連結:
  10. P. Tabrizian, S. Roayaie and M. E Schwartz. Current management of hepatocellular carcinoma. World J Gastroenterol 20(30): 10223-10237, 2014.
    連結:
  11. K. Han, J. H. Kim, G.-Y. Ko, D. I. Gwon and K.-B. Sung. Treatment of hepatocellular carcinoma with portal venous tumor thrombosis: A comprehensive review. World J Gastroenterol 22(1): 407-416, 2016.
    連結:
  12. E. Lanza, M. Donadon, D. Poretti et al. Transarterial Therapies for Hepatocellular Carcinoma. Liver Cancer 6: 27-33, 2017.
    連結:
  13. J. Lammer, K. Malagari, T. Vogl et al. Prospective Randomized Study of Doxorubicin-Eluting-Bead Embolization in the Treatment of Hepatocellular Carcinoma: Results of the PRECISION V Study. Cardiovasc Intervent Radiol 33: 41-52, 2010.
    連結:
  14. T. Kobayashi, M. Kubota, Y. Arai et al. Staged laparotomies based on the damage control principle to treat hemodynamically unstable grade IV blunt hepatic injury in an eight-year-old girl. Surgical Case Reports 2: 134-140, 2016.
    連結:
  15. L. Mondazzi, R. Bottelli, G. Brambilla et al. Transarterial oily chemoembolization for the treatment of hepatocellular carcinoma: A multivariate analysis of prognostic factors. Hepatology 19: 1115-1123, 1994.
    連結:
  16. K. Y. Tam, K. C.-F. Leung and Y.-X. J. Wang. Chemoembolization agents for cancer treatment. European Journal of Pharmaceutical Sciences 44: 1-10, 2011.
    連結:
  17. Z. Kan and D. C. Madoff. Liver anatomy: microcirculation of the liver. Semin Intervent Radiol 25: 77–85, 2008.
    連結:
  18. L. Marelli, R. Stigliano, C. Triantos et al. Transarterial Therapy for Hepatocellular Carcinoma: Which Technique Is More Effective? A Systematic Review of Cohort and Randomized Studies. CardioVascular and Interventional Radiology 30: 6-25, 2007.
    連結:
  19. M. A. Morse, B. A. Hanks, P. Suhocki et al. Improved time to progression for trans-arterial chemoembolization compared with trans-arterial embolization for patients with unresectable hepatocellular carcinoma. Clin Colorectal Cancer 11(3): 185-190, 2012.
    連結:
  20. E. Tsochatzis, T. Meyer, L. Marelli and A. K. Burroughs. Which transarterial therapy is best for hepatocellular carcinoma?--the evidence to date. J Hepatol 53: 586-589, 2010.
    連結:
  21. D. M. Coldwell, K. R. Stokes and W. F. Yakes. Embolotherapy: agents, clinical applications, and techniques. Radiographics 14: 623-643, 1994.
    連結:
  22. M. Y. Lee, V. P. Chuang, C. J. Wei, T. Y. Cheng and M. T. Cherng. Histopathologic correlation of hepatocellular carcinoma after transcatheter arterial chemoembolization with polyvinyl alcohol particle of various sizes. Eur J Radiol 81: 1976-1979, 2012.
    連結:
  23. H. Y. Woo, and J. Heo. Transarterial chemoembolization using drug eluting beads for the treatment of hepatocellular carcinoma: Now and future. Clinical and Molecular Hepatology 21: 344-348, 2015.
    連結:
  24. M. Varela, M. I. Real, M. Burrel et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 46: 474-481, 2007.
    連結:
  25. J. Lammer, K. Malagari, T. Vogl et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33: 41-52, 2010.
    連結:
  26. T. Osmałek, A. Froelich and S. Taearek. Application of gellan gum in pharmacy and medicine. Int J Pharm. 466: 328-340, 2014.
    連結:
  27. P.-E. Jansson and B. Lindberg. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 124:135-139, 1983.
    連結:
  28. S. A. Agnihotri, S. S. Jawalkar and T. M. Aminabhavi. Controlled release of cephalexin through gellan gum beads: Effect of formulation parameters on entrapment efficiency, size, and drug release. European Journal of Pharmaceutics and Biopharmaceutics 63(6):249-261, 2006.
    連結:
  29. J. T. Oliveira, L. Martins, R. Picciochi, P. B. Malafaya, R. A. Sousa et al. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J. Biomed. Mater. Res. 93:852-863, 2010.
    連結:
  30. J. Silva-Correia, J. M. Oliveira, S. G. Caridade, J. T. Oliveira, R. A. Sousa et al. Gellan gum-based hydrogels for intervertebral disc tissue ngineering applications. J. Tissue Eng. Regen. Med. 5: 97-107, 2011.
    連結:
  31. U. Posadowska, M. Brzychczy-Wloch and E. Pamula. Injectable gellan gum-based nanoparticles-loaded system for the local delivery of vancomycin in osteomyelitis treatment. Journal of Materials Science: Materials in Medicine 27(1): 1-9, 2016.
    連結:
  32. X. Wang, Z. Gai, B. Yu, J. Feng, C. Xu et al. Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads. Appl. Environ. Microbiol 73(20): 6421-6428, 2007.
    連結:
  33. V. D. Prajapati, G. K. Jani, B. S. Zala and T. A. Khutliwala. An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydrate Polymers 93: 670-678, 2013.
    連結:
  34. O. Novac, G. Lisa, L. Profire, C. Tuchilus and M. I. Popa. Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Materials Science and Engineering C 35: 291–299, 2014.
    連結:
  35. M. A. Bonifacio, P. Gentile, A. M. Ferreira, S. Cometa and E. Giglio. Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers 163: 280–291, 2017.
    連結:
  36. A. Shalviria, Q. Liu, M. J. Abdekhodaie and X. Y. Wua. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization. Carbohydrate Polymers 79(4): 898-907, 2010.
    連結:
  37. A. G. Sullad, L. S. Manjeshwar and T. M. Aminabhavi. Microspheres of carboxymethyl guar gum for in vitro release of abacavir sulfate: Preparation and characterization. Journal of applied polymer science 122(15): 452-460, 2011.
    連結:
  38. P. B. Kajjari, L. S. Manjeshwar and T. M. Aminabhavi. Novel pH- and Temperature-Responsive Blend Hydrogel Microspheres of Sodium Alginate and PNIPAAm-g-GG for Controlled Release of Isoniazid. AAPS PharmSciTech 13(4): 1147-1157, 2012.
    連結:
  39. M.-W. Lee, H.-J. Chen and S.-W. Tsao. Preparation, characterization and biological properties of Gellan gum films with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linker. Carbohydrate Polymers 82(3): 920-926, 2010.
    連結:
  40. T. Osmałek, A. Froelich and S. Tasarek. Application of gellan gum in pharmacy and medicine. Int J Pharm 466: 328-40, 2014.
    連結:
  41. M. Narkar, P. Sher and A. Pawar. Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSci- Tech 11(1): 267-277, 2010.
    連結:
  42. W. Kubo, S. Miyazaki and D. Attwood. Oral sustained delivery of paracetamol from in-situ gelling gum and sodium alginate formulations. International Journal of Pharmacy 258: 55–64, 2003.
    連結:
  43. F. Paul, A. Morin and P. Monsan. Microbial polysaccharides with actual potential industrial applications. Biotechnology advances 4(2): 245–259, 1986.
    連結:
  44. M. Megawati, C. K. Chua, Z. Sofer, K. Klímová and M. Pumera. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties. Phys Chem Chem Phys., 2017.
    連結:
  45. S. Gurunathan, J.W. Han, A.A. Dayem et al. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem 19(4): 1280-1288, 2013.
    連結:
  46. Y. Tao, E. Ju, J. Ren and X. Qu. Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials 35(37): 9963-9971, 2014.
    連結:
  47. H. Kim, D. Lee, J. Kim et al. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACSNANO 7(8): 6735-6746, 2013.
    連結:
  48. Y. Li, H. Yuana, A. Busschec, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. PANS 110(30): 12295-12300, 2013.
    連結:
  49. J. Ma, R. Liu, X. Wang et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 9: 10498-515, 2015.
    連結:
  50. A. Figarol, J. Pourchez, D. Boudard, V. Forest et al. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization. Toxicol In Vitro 30: 476-85, 2015.
    連結:
  51. X. Wang, M. C. Duch, N. Mansukhani et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano 9: 3032-43, 2015.
    連結:
  52. L. A. V. Luna, A. C. M. Moraes, S. R. Consonni et al. Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J. Nanobiotechnol 14: 12-29, 2016.
    連結:
  53. J. McIntyre, N. K. Verma, R. J. Smith et al. A comparison of catabolic pathways induced in primary macrophages by pristine single walled carbon nanotubes and pristine graphene. RSC Adv. 6: 65299-310, 2016.
    連結:
  54. W. Wu, L. Yan, Q. Wu et al. Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology 10: 1329-40, 2016.
    連結:
  55. K.-H. Liao, Y.-S. Lin, C. W. Macosko and C. L. Haynes. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 3: 2607–15, 2010.
    連結:
  56. M. Kucki, P. Rupper, C. Sarrieu et al. Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale 8: 8749–60, 2016.
    連結:
  57. S. M. Chowdhury, J. Fang and B. Sitharaman. Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci. 1(3): FSO19 , 2015.
    連結:
  58. S. Xu, S. Xu, S. Chen et al. Graphene oxide modulates B cell surface phenotype and impairs immunoglobulin secretion in plasma cell. J. Nanosci. Nanotechnol. 16: 4205–15, 2016.
    連結:
  59. Y. Talukdar, J. T. Rashkow, G. Lalwani, S. Kanakia and B. Sitharaman. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35: 4863–77, 2014.
    連結:
  60. E. Hashemi, O. Akhavan, M. Shamsara, M. Daliri, M. Dashtizad and A. Farmany. Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells. Colloids Surf. B 146: 770–6, 2016.
    連結:
  61. Q. Hu, B. Jiao, X. Shi, R. P. Valle, Y. Y. Zuo and G. Hu. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film. Nanoscale 7: 18025–9, 2015.
    連結:
  62. X. Liu and K. L. Chen. Interactions of graphene oxide with model cell membranes: probing nanoparticle attachment and lipid bilayer disruption. Langmuir 31: 12076–86, 2015.
    連結:
  63. M. Feng, H. Kang, Z. Yang, B. Luan and R. Zhou. Potential disruption of protein–protein interactions by graphene oxide. J. Chem. Phys. 144: 225102, 2016.
    連結:
  64. Y. Volkov, J. McIntyre and A. Prina-Mello. Graphene toxicity as a double-edged sword of risks and exploitable opportunities: a critical analysis of the most recent trends and developments. 2D Mater. 4: 022001, 2017.
    連結:
  65. K. Bhattacharya, S. P. Mukherjee, A. Gallud et al. Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine 12: 333–51, 2016.
    連結:
  66. Y. Liu, X. Wang, J. Wang et al. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ. Sci. Technol. 50: 3154–64, 2016.
    連結:
  67. I. I. Vlasova, A. A. Kapralov, Z. P. Michael et al. Enzymatic oxidative biodegradation of nanoparticles: mechanisms, significance and applications. Toxicol. Appl. Pharmacol. 299: 58–69, 2016.
    連結:
  68. W. Zhang, L. Yan, M. Li et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicol. Lett. 237: 61–71, 2015.
    連結:
  69. X.-Y. Wang, R. Lei, H.-D. Huang et al. The permeability and transport mechanism of graphene quantum dots (GQDs) across the biological barrier. Nanoscale 7: 2034–41, 2015.
    連結:
  70. H. S. Choi, W. Liu, P. Misra et al. Renal clearance of quantum dots. Nat. Biotechnol. 25: 1165–70, 2007.
    連結:
  71. D. A. Jasim, C. Menard-Moyon, D. Begin, A. Bianco and K. Kostarelos. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem. Sci. 6: 3952–64, 2015.
    連結:
  72. D. A. Jasim, H. Boutin, M. Fairclough et al. Thickness of functionalized graphene oxide sheets plays critical role in tissue accumulation and urinary excretion: a pilot PET/CT study. Appl. Mater. Today 4: 24–30, 2016.
    連結:
  73. M. Guan, J. Ge, J. Wu et al. Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials 103: 75–85, 2016.
    連結:
  74. M. Guan, J. Li, Q. Y. Jia et al. A versatile and clearable nanocarbon theranostic based on carbon dots and gadolinium metallofullerene nanocrystals. Adv. Healthcare Mater. 5: 2283–94, 2016.
    連結:
  75. N. Parvin and T. K. Mandal. Synthesis of a highly fluorescence nitrogen-doped carbon quantum dots bioimaging probe and its in vivo clearance and printing applications. RSC Adv. 6: 18134–40, 2016.
    連結:
  76. H. Kim, J. Kim, M. Lee, H. C. Choi and W. J. Kim. Stimuli-regulated enzymatically degradable smart graphene-oxide-polymer nanocarrier facilitating photothermal gene delivery. Adv. Healthcare Mater. 5: 1918–30, 2016.
    連結:
  77. R. S. Benjamin, P. H. Wiernik and N. R. Bachur. Adriamycin chemotherapy-efficacy, safety, and pharmacologic basis of an intermittent single high-dosage schedule. Cancer 33: 19-27, 1974.
    連結:
  78. D. W. Kim, C. Talati and R. Kim. Hepatocellular carcinoma (HCC): beyond sorafenib-chemotherapy. Journal of Gastrointestinal Oncology 8(2): 256-265, 2016.
    連結:
  79. O. Tacar, P. Sriamornsak and C. R. Dass. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy And Pharmacology 65: 157-170, 2012.
    連結:
  80. Z. Zheng, P. Pavlidis, S. Chua, V. D. D'Agati and A. G. Gharavi. An ancestral haplotype defines susceptibility to doxorubicin nephropathy in the laboratory mouse. J Am Soc Nephrol 17: 1796–1800, 2006.
    連結:
  81. Y. Wang, Y. P. Wang, Y. C. Tay and D. C. Harris. Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int 58: 1797–1804, 2000.
    連結:
  82. M. Rook, A. T. Lely, A. B. Kramer, H. Goor and G. Navis. Individual differences in renal ACE activity in healthy rats predict susceptibility to adriamycin-induced renal damage. Nephrol Dial Transplant 20: 59–64, 2005.
    連結:
  83. C. L. Olweny, T. Toya, E. Katongole-Mbidde, J. Mugerwa, S. K. Kyalwazi and H. Cohen. Treatment of hepatocellular carcinoma with adriamycin. Preliminary communication. Cancer 36: 1250-7, 1975.
    連結:
  84. W. Yeo, T. S. Mok, B. Zee et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst 97: 1532-1538, 2005.
    連結:
  85. Rivanlar S. An overview of doxorubicin formations in cancer therapy. J Cancer Res. 10(4): 853-8, 2014.
    連結:
  86. S. Mitra, U. Gaur, P. C. Ghosh and A. N. Maitra. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Rel 74: 317–323, 2001.
    連結:
  87. R. L. Juliano and D. Stamp. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 63: 651–658, 1975.
    連結:
  88. K. Sun, J. Wang, J. Zhang, M. Hua, C. Liu and T. Chen. Dextran-grafted-PEI nanoparticles as a carrier for co-delivery of adriamycin and plasmid into osteosarcoma cells. Int J Biol Macromol 49: 173–180, 2011.
    連結:
  89. Z. Kan, M. Sato, K. Ivancev et al. Distribution and effect of iodized poppyseed oil in the liver after hepatic artery embolization: experimental study in several animal species. Radiology 186(3): 861–866, 1993.
    連結:
  90. Z. Kan and S. Wallace. Sinusoidal embolization: impact of iodized oil on hepatic microcirculation. J. Vasc. Inter. Radiol. 5(6): 881–886, 1994.
    連結:
  91. Z. Kan, K. Wright and S. Wallace. Ethiodized oil emulsions in hepatic microcirculation: in vivo microscopy in animal models. Academic Radiol. 4(4): 275–282, 1997.
    連結:
  92. S. W. Yi, Y.-H. Kim, I. C. Kwon et al. Stable lipiodolized emulsions for hepatoma targeting and treatment by transcatheter arterial chemoembolization. J. Control Release 50(1–3): 135–143, 1998.
    連結:
  93. G. E. Boyd, A. W. Adamson and J. Schubert. The exchange adsorption of ions from aqueous solutions by organic zeolites; ion-exchange equilibria. J. Am. Chem. Soc. 69(11): 818-2829, 1947.
    連結:
  94. M. Biondi, S. Fusco, A. L. Lewis and P. A. Netti. Investigation of the mechanisms governing doxorubicin and irinotecan release from drug-eluting beads: mathematical modeling and experimental verification. J. Mater. Sci. 24(10), 2359–23570, 2013.
    連結:
  95. S. H. Jeong, N. H. Berhane, K. Haghighi and K. Park. Drug release properties of polymer coated ion-exchange resin complexes: experimental and theoretical evaluation. J. Pharm. Sci. 96(3): 618–632, 2007.
    連結:
  96. J. Namur, M. Wassef, J. M. Millot, A. L. Lewis, M. Manfait and A. Laurent. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J. Vasc. Interv. Radiol. 21(2): 259–267, 2010.
    連結:
  97. J. Namur, S. J. Citron, M. T. Sellers et al. Embolization of hepatocellular carcinoma with drug-eluting beads: doxorubicin tissue concentration and distribution in patient liver explants. J. Hepatol. 55(6): 1332–1338, 2011.
    連結:
  98. S. Vinchon-Petit, D. Jarnet, S. Michalak, A. Lewis, J. P. Benoit and P. Menei. Local implantation of doxorubicin drug eluting beads in rat glioma. Int. J. Pharm. 402(1–2): 184–189, 2010.
    連結:
  99. S. Stampfl, U. Stampfl, N. Bellemann et al. Immunohistochemical characterization of specific inflammatory tissue reactions following embolization with four different spherical agents in the minipig kidney model. J. Vasc. Interv. Radiol. 20(7): 936–945, 2009.
    連結:
  100. T. A. Buchholz, D. N. Stivers, J. Stec, M. Ayers, E. Clark et al. Global gene expression changes during neoadjuvant chemotherapy for human breast cancer. Cancer J 8: 461-468, 2002.
    連結:
  101. S. N. Hilmer, V. C. Cogger, M. Muller and D. G. Couteur. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab Dispos 32: 794–799, 2004.
    連結:
  102. I. R. Dubbelboer, E. Lilienberg, E. Ahnfelt, E. Sjögren, N. Axén and H. Lennernäs. Treatment of intermediate stage hepatocellular carcinoma: a review of intrahepatic doxorubicin drug-delivery systems. Therapeutic Delivery 5(4): 447-466, 2014.
    連結:
  103. K. L. Leung and Y. T. Wang. Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7. Basic Cancer Res Treat 55: 73–83, 1999.
    連結:
  104. K. M. Tewey, T. C. Rowe, L. Yang, B. D. Halligan and L. F. Liu. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466-8, 1984.
    連結:
  105. S. Matt and T. G. Hofmann. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell. Mol. Life Sci. 73:2829–2850, 2016.
    連結:
  106. O. Tacar and C. R. Dass. Doxorubicin-induced death in tumour cells and cardiomyocytes: is autophagy the key to improving future clinical outcomes? Journal of Pharmacy And Pharmacology 65: 1577-1589, 2013.
    連結:
  107. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185-229, 2004.
    連結:
  108. E. Bouyer, G. Mekhloufi, V. Rosilio et al. Protein, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics 436: 359-378, 2012.
    連結:
  109. J. P. Ley. Masking bitter taste by molecules. Chemosens 1: 58-77, 2008.
    連結:
  110. A. Kogan and N. Garti. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface 123-126: 369-385, 2006.
    連結:
  111. B. Brime, M. Moreno, G. Frutos et al. Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation. J. Pharma. 94: 1178-1185, 2002.
    連結:
  112. J. L. Grossiord and M. Stambouli. Potentialities of W/O/W multiple emulsions in drug delivery and detoxification. Multiple Emulsions Technology and Applications 8: 209-234, 2008.
    連結:
  113. J. A. Floyd, A. Galperin and D. Buddy. Ratner. Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Advanced Drug Delivery Reviews 91: 23-37, 2015.
    連結:
  114. I. Capek. Degradation of Kinetically-stable o/w emulsion. Adv. Colloid Interface 107: 125-155, 2004.
    連結:
  115. T. G. Mason, J. N. Wilking and K. Meleson et al. Nanoemulsions: formation, structure, and physical properties. Condensed Matter 18: 635-666, 2006.
    連結:
  116. C. Solans, P. Izquierde, J. Nolla et al. Nanoemulsions. Curr, Opin. Colloid Interface 10: 102-110, 2005.
    連結:
  117. D. J. McClements. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 6: 2297-2316, 2011.
    連結:
  118. T. J. Wooster, M. Golding and P. Sanguansri. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24(22): 12758-12765, 2008.
    連結:
  119. R. Langer. Drug delivery and targeting. Nature 392: 5-10, 1998.
    連結:
  120. J. R. Brouwers. Advanced and controlled drug delivery systems in clinical disease management. Pharm World Sci 18(5): 153-62, 1996.
    連結:
  121. E. Kathryn. Uhrich, Scott M. Cannizzaro, Robert S. Langer and Kevin M. Shakesheff. Polymeric Systems for Controlled Drug Release. Chem. Rev. 99: 3181-3198, 1999.
    連結:
  122. P. Costa and J. M. Sousa Lobo. Modeling and comparison of dissolution profiles. Eur J Pharm 13: 123-133, 2001.
    連結:
  123. H. Yan, X. Tao, Z. Yang et al. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Journal of Hazardous Materials 258: 191-198, 2014.
    連結:
  124. T. Higuchi. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52: 1145-1149, 1963.
    連結:
  125. R.W. Korsmeyer, R. Gurny, E. M. Doelker, P. Buri and N. A. Peppas. Mechanism of solute release from porous hydrophilic polymers. Int. J.Pharm. 15: 25-35, 1983.
    連結:
  126. C. S. Park , K. S. Choi, J. W. Shin and S. Y. Kim. Inhibition of viability of the respiratory epithelial cells using functionalized graphene oxide J. Nanosci. Nanotechnol. 15: 2060–6, 2015.
    連結:
  127. H. Cao, H. Phan and L.-X. Yang. Improved Chemotherapy for Hepatocellular Carcinoma. Anticancer Research 32: 1379-1386, 2012.
  128. C. Solans, R. Pons and H. Kunieda. Overview of basic aspects of microemulsions. Industrial Applications of Microemulsions 66: 1-19, 1997.
  129. S.E. Friberg and R.L. Venable. Microemulsions. Encyclopedia of Emulsion Technology 1: 287-336, 1983.