题名

草莓葉乙醇萃取物對調控脂多醣誘發C57BL/6J小鼠發炎反應及肌肉耗損之功效

并列篇名

Effect of the strawberry leaf ethanol extract on lipopolysaccharide-induced inflammatory response and muscle wasting in C57BL/6J mice

作者

顏玉佩

关键词

草莓葉 ; 脂多醣(LPS) ; UPP路徑 ; 肌肉耗損 ; 促發炎細胞因子 ; strawberry leaves ; lipopolysaccharide ; ubiquitin-proteasome pathway ; muscle atrophy ; pro-inflammatory cytokines

期刊名称

中山醫學大學營養學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

劉德中

内容语文

繁體中文

中文摘要

脂多醣(Lipopolysaccharide, LPS)為革蘭氏陰性菌細胞壁的主要成分,先前研究證實,LPS會誘發小鼠生成大量促發炎媒介物,導致體內器官發炎,亦會活化泛素‐蛋白酶體途徑(ubiquitin-proteasome pathway, UPP)、自噬‐溶酶體途徑(autophagy-lysosome pathway, ALP)及Caspase-3,增加骨骼肌蛋白質分解,使肌肉萎縮。文獻指出,草莓葉萃取物可抑制發炎、增加抗氧化酵素及降低脂質過氧化,而本研究將探討草莓葉乙醇萃取物是否能抑制LPS誘發的發炎反應及肌肉萎縮。C57BL/6J小鼠灌食滅菌水或草莓葉乙醇萃取物 (500 mg/kg),每週3次,持續2週後,在小鼠腹腔內注射LPS,18小時後犧牲。研究結果顯示,草莓葉乙醇萃取物可以改善LPS造成脾臟腫大,降低血液、肝、脾、肺臟及副睪脂肪促發炎媒介物tumor necrosis factor-alpha、interleukin-6、interleukin-1 beta、monocyte chemoattractant protein-1、inducible nitric oxide synthase、cytochrome c oxidase-2生成,並減少紅血球glutathione耗損、紅血球及肝臟malondialdehyde的生成,同時降低肝臟nuclear factor erythroid 2-related factor 2的表現。灌食草莓葉乙醇萃取物可顯著改善LPS誘發脛前肌 myosin heavy chain蛋白質及脛前肌重量的減少。灌食草莓葉乙醇萃取物亦可減少LPS誘發UPP路徑中 muscle atrophy F-box與muscle RING finger protein 1表現及Caspase-3活性。此外,草莓葉乙醇萃取物處理可減少LPS誘發肌肉組織inhibitor kappa B-α、inhibitor kappa B kinaseα/β、mitogen-activated protein kinases (MAPKs)的磷酸化及NF-κB p65、forkhead box protein O 1核蛋白的表現量。綜合以上實驗結果可知,補充草莓葉乙醇萃取物可經由抑制MAPKs、NF-κB和FoxO1活化,顯著改善LPS誘發的發炎反應,減少蛋白質分解相關分子的表現,改善LPS誘發之骨骼肌肉耗損。

英文摘要

Lipopolysaccharide (LPS), a main component of the cell wall of Gram-negative bacteria, could increase pro-inflammatory mediator production which result in organ inflammation. Data have shown that LPS through activation of ubiquitin-proteasome pathway (UPP), autophagy-lysosome pathway, Caspase-3, causes skeletal muscle protein degradation and then muscle atrophy. Strawberry leaf extracts can suppress inflammation and lipid peroxidation as well as increase antioxidant enzyme expression. The aim of this study was to investigate the inhibitory effect of strawberry leaf ethanol extract on LPS-induced inflammatory response and muscle atrophy. C57BL/6J mice were given dd water or strawberry leaf ethanol extract (500 mg/kg, 150 μl/mouse by intragastric gavage, every other day), three times a week for two weeks, then sacrificed after intraperitoneal injection of LPS eighteen hours. Strawberry leaf ethanol extract can significantly decrease LPS-induced spleen enlargement as well as pro-inflammatory mediator tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, monocyte chemoattractant protein-1, inducible nitric oxide synthase, cytochrome c oxidase-2 production in plasma, liver, spleen, lung and epididymis adipose tissue, glutathione depletion and malondialdehyde (MDA) production in RBC as well as MDA production and nuclear factor erythroid 2-related factor 2 reduction. Notably, supplementation with strawberry leaf ethanol extract could decrease LPS-induced depletion of myosin heavy chain expression and tibialis anterior muscle weight. Strawberry leaf ethanol extract significantly decreased LPS-induced expression of UPP related protein, muscle F-box 1, muscle RING finger protein 1, and caspase-3 activity that result in decrease of protein degradation and muscle atrophy in LPS treated mice. Moreover, strawberry leaf ethanol extract significantly diminished LPS-induced phosphorylation of inhibitor kappa B, inhibitor kappa B kinase, mitogen-activated protein kinases (MAPKs) as well as NF-kB p65 and forkhead box protein O 1 nuclear protein expression. In summary, supplementation of strawberry leaf ethanol extract significantly lessened LPS-induced inflammation and muscle atrophy which is related to its inhibitory effect on LPS-induced activation of MAPKs, NF-kB and FoxO1 as well as protein degradation pathways.

主题分类 醫藥衛生 > 預防保健與衛生學
健康管理學院 > 營養學研究所
参考文献
  1. 1. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012;4(3).
    連結:
  2. 2. Voisin L, Breuillé D, Combaret L, et al. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways. Journal of Clinical Investigation 1996;97(7):1610.
    連結:
  3. 3. Schakman O, Dehoux M, Bouchuari S, et al. Role of IGF-I and the TNFalpha/NF-kappaB pathway in the induction of muscle atrogenes by acute inflammation. Am J Physiol Endocrinol Metab 2012;303(6):E729-39.
    連結:
  4. 4. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 2009;119(10):2868-78.
    連結:
  5. 6. Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol 2013;34(3):129-36.
    連結:
  6. 7. Das S, Santra A, Lahiri S, Guha Mazumder DN. Implications of oxidative stress and hepatic cytokine (TNF-alpha and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 2005;204(1):18-26.
    連結:
  7. 8. Thimmulappa RK, Lee H, Rangasamy T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 2006;116(4):984-95.
    連結:
  8. 9. Hwang YP, Choi JH, Yun HJ, et al. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem Toxicol 2011;49(1):93-9.
    連結:
  9. 10. Khodagholi F, Tusi SK. Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells. Molecular and cellular biochemistry 2011;354(1-2):97-112.
    連結:
  10. 11. Jiang W, Luo F, Lu Q, et al. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chem Biol Interact 2016;243:127-34.
    連結:
  11. 12. Artner D, Oblak A, Ittig S, et al. Conformationally constrained lipid A mimetics for exploration of structural basis of TLR4/MD-2 activation by lipopolysaccharide. ACS Chem Biol 2013;8(11):2423-32.
    連結:
  12. 13. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005;17(1):1-14.
    連結:
  13. 14. Doyle SL, O'Neill LA. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 2006;72(9):1102-13.
    連結:
  14. 15. O'Neill LA. How Toll-like receptors signal: what we know and what we don't know. Curr Opin Immunol 2006;18(1):3-9.
    連結:
  15. 17. Qi J, Qiao Y, Wang P, Li S, Zhao W, Gao C. microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Letters 2012;586(8):1201-7.
    連結:
  16. 18. Kim K. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-κB activation. Toxicology and Applied Pharmacology 2003;190(1):1-8.
    連結:
  17. 19. Ulich TR, Guo K, Del Castillo J. Endotoxin-induced cytokine gene expression in vivo. Am J Pathol 1989;134(11).
    連結:
  18. 20. Meng Z, Yan C, Deng Q, Gao DF, Niu XL. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kappaB pathways. Acta Pharmacol Sin 2013;34(7):901-11.
    連結:
  19. 21. Li W, Moylan JS, Chambers MA, Smith J, Reid MB. Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 2009;297(3):C706-14.
    連結:
  20. 22. Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB Journal 2011;25(1):99-110.
    連結:
  21. 23. Pedersen M, Bruunsgaard H, Weis N, et al. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mechanisms of Ageing and Development 2003;124(4):495-502.
    連結:
  22. 24. Combaret L, Tilignac T, Claustre A, et al. Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubiquitin–proteasome-dependent proteolysis in cancer and septic rats. Biochemical Journal 2002;361(2):185-92.
    連結:
  23. 25. Costelli P, Carbo N, Tessitore L, et al. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. Journal of Clinical Investigation 1993;92(6):2783.
    連結:
  24. 26. Mizunoya W, Iwamoto Y, Sato Y, Tatsumi R, Ikeuchi Y. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats. Anim Sci J 2014;85(3):293-304.
    連結:
  25. 27. Shiota C, Abe T, Kawai N, et al. Flavones inhibit LPS-induced atrogin-1/MAFbx expression in mouse C2C12 skeletal myotubes. Journal of nutritional science and vitaminology 2015;61(2):188-94.
    連結:
  26. 28. Waddell DS, Baehr LM, van den Brandt J, et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 2008;295(4):E785-97.
    連結:
  27. 29. Attaix D, Baracos VE, Pichard C. Muscle wasting: a crosstalk between protein synthesis and breakdown signalling. Current Opinion in Clinical Nutrition & Metabolic Care 2012;15(3):209-10.
    連結:
  28. 30. Hasselgren P-O, Talamini M, James JH, Fischer JE. Protein metabolism in different types of skeletal muscle during early and late sepsis in rats. Archives of Surgery 1986;121(8):918-23.
    連結:
  29. 31. Hasselgren P-O, James JH, Benson DW, et al. Total and myofibrillar protein breakdown in different types of rat skeletal muscle: effects of sepsis and regulation by insulin. Metabolism 1989;38(7):634-40.
    連結:
  30. 32. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17(7):1807-19.
    連結:
  31. 33. Langen RC, Haegens A, Vernooy JH, et al. NF-kappaB activation is required for the transition of pulmonary inflammation to muscle atrophy. Am J Respir Cell Mol Biol 2012;47(3):288-97.
    連結:
  32. 35. Hashimoto M, Inoue T, Katakura M, et al. Differential effects of docoosahexaenoic and arachidonic acid on fatty acid composition and myosin heavy chain-related genes of slow-and fast-twitch skeletal muscle tissues. Molecular and cellular biochemistry 2016;415(1-2):169-81.
    連結:
  33. 36. Ikemoto M. Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway. The FASEB Journal 2001.
    連結:
  34. 37. Kim A, Im M, Gu MJ, Ma JY. Citrus unshiu peel extract alleviates cancer-induced weight loss in mice bearing CT-26 adenocarcinoma. Sci Rep 2016;6:24214.
    連結:
  35. 38. Hickson R, Czerwinski S, Wegrzyn L. Glutamine prevents downregulation of myosin heavy chain synthesis and muscle atrophy from glucocorticoids. American Journal of Physiology-Endocrinology and Metabolism 1995;268(4):E730-E4.
    連結:
  36. 39. Liu Z, Fan W, Chen J, Liang Z, Guan L. The role of Interleukin 15 in protein degradation in skeletal muscles in rats of chronic obstructive pulmonary disease. International journal of clinical and experimental medicine 2015;8(2):1976.
    連結:
  37. 40. M Casañola-Martin G, Le-Thi-Thu H, Pérez-Giménez F, et al. Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin-Proteasome Pathway (UPP) Proteins. Current Protein and Peptide Science 2016;17(3):220-7.
    連結:
  38. 41. Cook WJ, Jeffrey LC, Xu Y, Chau V. Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry 1993;32(50):13809-17.
    連結:
  39. 42. Yang WL, Zhang X, Lin HK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 2010;29(32):4493-503.
    連結:
  40. 43. Hou C-C, Yang W-X. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Molecular biology reports 2013;40(4):3213-30.
    連結:
  41. 44. Nickson CM, Parsons JL. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay. Front Genet 2014;5:232.
    連結:
  42. 46. Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB Journal 2004;18(1):39-51.
    連結:
  43. 47. McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol 2010;298(3):C542-9.
    連結:
  44. 48. Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294(5547):1704-8.
    連結:
  45. 49. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 2001;98(25):14440-5.
    連結:
  46. 50. Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 2011;589(Pt 19):4759-76.
    連結:
  47. 51. Cong H, Sun L, Liu C, Tien P. Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. Hum Gene Ther 2011;22(3):313-24.
    連結:
  48. 52. Hamasaki M, Furuta N, Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013;495(7441):389-93.
    連結:
  49. 53. Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 2014;1840(4):1254-65.
    連結:
  50. 54. Duarte S, Arango D, Parihar A, Hamel P, Yasmeen R, Doseff AI. Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function. Int J Mol Sci 2013;14(9):17664-79.
    連結:
  51. 55. Shang K, Zhang J, Amna T, et al. Attenuation of cellular toxicity by calpain inhibitor induced by bacterial endotoxin: a mechanistic study using muscle precursor cells as a model system. Mol Biol Rep 2015;42(8):1281-8.
    連結:
  52. 56. Li T, Cai S, Zeng Z, et al. Protective effect of polydatin against burn-induced lung injury in rats. Respir Care 2014;59(9):1412-21.
    連結:
  53. 57. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298(5600):1911-2.
    連結:
  54. 58. Zeng Y, Li J, Wang HX, et al. Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes. PLoS One 2013;8(1):e53831.
    連結:
  55. 59. Comer DM, Kidney JC, Ennis M, Elborn JS. Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. Eur Respir J 2013;41(5):1058-67.
    連結:
  56. 60. Li YP, Chen Y, John J, et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB Journal 2005;19(3):362-70.
    連結:
  57. 61. Zhang G, Jin B, Li YP. C/EBPbeta mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO Journal 2011;30(20):4323-35.
    連結:
  58. 62. Zhang H, Wang Z-W, Wu H-B, et al. Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK–NF-κB pathways. Molecular and cellular biochemistry 2013;375(1-2):11-21.
    連結:
  59. 63. Fu Y, Liu B, Zhang N, et al. Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-kappaB and MAPKs signaling pathways. J Ethnopharmacol 2013;145(1):193-9.
    連結:
  60. 64. Liu Y, Bao L, Xuan L, Song B, Lin L, Han H. Chebulagic acid inhibits the LPS-induced expression of TNF-alpha and IL-1beta in endothelial cells by suppressing MAPK activation. Exp Ther Med 2015;10(1):263-8.
    連結:
  61. 65. Ueno M, Maeshige N, Hirayama Y, Nakanishi R, Yoshikawa M, Fujino H. Pulsed Ultrasound Stimulation Prevents Bacterial Lipopolysaccharide Induced Muscle Wasting and p38 MAPK Phosphorylation in Mouse C2C12 Skeletal Myotubes. The FASEB Journal 2016;30(1 Supplement):745.3-.3.
    連結:
  62. 66. Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR. Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 2002;277(6):3863-9.
    連結:
  63. 67. Liou H-C, Baltimore D. Regulation of the NF-ηB/rel transcription factor and IηB inhibitor system. Current opinion in cell biology 1993;5(3):477-87.
    連結:
  64. 68. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD. Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999;18(51):7389-94.
    連結:
  65. 69. Traenckner E, Pahl HL, Henkel T, Schmidt K, Wilk S, Baeuerle P. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. The EMBO Journal 1995;14(12):2876.
    連結:
  66. 71. Guttridge DC, Mayo MW, Madrid LV, Wang C-Y, Baldwin Jr AS. NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 2000;289(5488):2363-6.
    連結:
  67. 72. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κB. The FASEB Journal 2001;15(7):1169-80.
    連結:
  68. 73. Cai D, Frantz JD, Tawa NE, Jr., et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004;119(2):285-98.
    連結:
  69. 74. Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117(3):399-412.
    連結:
  70. 75. Lee D, Goldberg AL. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 2013;288(42):30515-26.
    連結:
  71. 76. Wang DT, Yin Y, Yang YJ, et al. Resveratrol prevents TNF-alpha-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int Immunopharmacol 2014;19(2):206-13.
    連結:
  72. 77. Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB Journal 2012;26(3):987-1000.
    連結:
  73. 78. Schaart JG, Dubos C, Romero De La Fuente I, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria x ananassa) fruits. New Phytol 2013;197(2):454-67.
    連結:
  74. 79. Aaby K, Mazur S, Nes A, Skrede G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem 2012;132(1):86-97.
    連結:
  75. 80. Wang SY, Feng R, Lu Y, Bowman L, Ding M. Inhibitory effect on activator protein-1, nuclear factor-kappaB, and cell transformation by extracts of strawberries (Fragaria× ananassa Duch.). Journal of agricultural and food chemistry 2005;53(10):4187-93.
    連結:
  76. 81. Lee J, Kim S, Namgung H, et al. Ellagic acid identified through metabolomic analysis is an active metabolite in strawberry ('Seolhyang') regulating lipopolysaccharide-induced inflammation. J Agric Food Chem 2014;62(18):3954-62.
    連結:
  77. 82. Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry 2000;48(11):5677-84.
    連結:
  78. 83. Karlund A, Salminen JP, Koskinen P, et al. Polyphenols in strawberry (Fragaria x ananassa) leaves induced by plant activators. J Agric Food Chem 2014;62(20):4592-600.
    連結:
  79. 84. Simirgiotis MJ, Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD–ESI-MS and free radical quenching techniques. Journal of Food Composition and Analysis 2010;23(6):545-53.
    連結:
  80. 86. Wang SY, Lin H-S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of agricultural and food chemistry 2000;48(2):140-6.
    連結:
  81. 87. Ibrahim DS, Abd El-Maksoud MA. Effect of strawberry (Fragaria x ananassa) leaf extract on diabetic nephropathy in rats. Int J Exp Pathol 2015;96(2):87-93.
    連結:
  82. 88. Mudnic I, Modun D, Brizic I, et al. Cardiovascular effects in vitro of aqueous extract of wild strawberry (Fragaria vesca, L.) leaves. Phytomedicine 2009;16(5):462-9.
    連結:
  83. 89. Skupien K, Oszmianski J, Kostrzewa-Nowak D, Tarasiuk J. In vitro antileukaemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Lett 2006;236(2):282-91.
    連結:
  84. 90. Liberal J, Francisco V, Costa G, et al. Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J Ethnopharmacol 2014;158 Pt A:113-22.
    連結:
  85. 92. Alzaid F, Cheung HM, Preedy VR, Sharp PA. Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One 2013;8(11):e78932.
    連結:
  86. 93. Kwon O, Eck P, Chen S, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB Journal 2007;21(2):366-77.
    連結:
  87. 94. Yamamoto M, Nakatsuka S, Otani H, Kohmoto K, Nishimura S. (+)-Catechin acts as an infection-inhibiting factor in strawberry leaf. Phytopathology 2000;90(6):595-600.
    連結:
  88. 95. Yuan H, Perry CN, Huang C, et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 2009;296(2):H470-9.
    連結:
  89. 96. Li J, Zhang X, Huang H. Protective effect of linalool against lipopolysaccharide/D-galactosamine-induced liver injury in mice. Int Immunopharmacol 2014;23(2):523-9.
    連結:
  90. 97. Lin J, Cheng Y, Wang T, et al. Soyasaponin Ab inhibits lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2016;30:121-8.
    連結:
  91. 98. Jin B, Li YP. Curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation and muscle mass loss. J Cell Biochem 2007;100(4):960-9.
    連結:
  92. 99. Sakata K, Hirose Y, Qiao Z, Tanaka T, Mori H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Letters 2003;199(2):139-45.
    連結:
  93. 100. Fan W, Morinaga H, Kim JJ, et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO Journal 2010;29(24):4223-36.
    連結:
  94. 5. Hippenstiel S, Soeth S, Kellas B, et al. Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 2000;95(10):3044-51.
  95. 16. Menon D, Coll R, O'Neill LA, Board PG. Glutathione transferase Omega 1 modulates metabolism in LPS/TLR4 activated macrophages. J Cell Sci 2015:jcs. 167858.
  96. 34. Lompre A, Nadal-Ginard B, Mahdavi V. Expression of the cardiac ventricular alpha-and beta-myosin heavy chain genes is developmentally and hormonally regulated. Journal of Biological Chemistry 1984;259(10):6437-46.
  97. 45. Tu Y, Chen C, Pan J, Xu J, Zhou Z-G, Wang C-Y. The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol 2012;5(8):726-38.
  98. 70. Bellas RE, FitzGerald MJ, Fausto N, Sonenshein GE. Inhibition of NF-kappa B activity induces apoptosis in murine hepatocytes. The American journal of pathology 1997;151(4):891.
  99. 85. Ivanov I, Petkova N, Denev P, Pavlov A. Polyphenols content and antioxidant activities in infusion and decoction extracts obtained from Fragaria vesca L. leaves. Scientific Bulletin Series F Biotechnologies 2015;19:145-8.
  100. 91. Sodagari HR, Farzaei MH, Bahramsoltani R, Abdolghaffari AH, Mahmoudi M, Rezaei N. Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert review of gastroenterology & hepatology 2015;9(6):807-20.