题名

不同鑄造方式對於AISI 420不銹鋼微結構與機械性質之影響

并列篇名

The Influence of Various Casting Processes on the Microstructure and Mechanical Properties of AISI 420 Stainless Steel

DOI

10.6841/NTUT.2011.00243

作者

楊衍鴻

关键词

鑄造 ; AISI 420不銹鋼 ; 衝擊值 ; 預熔合金顆粒 ; 退火 ; 淬火 ; 低溫回火 ; Casting ; AISI 420 Stainless Steel ; Impact ; Granshot ; Annealing ; Quench and Low-temperature Tempering

期刊名称

臺北科技大學材料科學與工程研究所學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

張世賢

内容语文

繁體中文

中文摘要

本研究藉著不同的鑄造方式與持溫時間,比較其對AISI 420不銹鋼微結構與機械性質之影響,微結構的探討包含晶粒大小、碳化物析出與破壞分析;機械性質差異之比較方面,如硬度、衝擊值、抗拉強度、斷面收縮率與伸長率等,此外,同時進一步探討微結構組織產生之差異,對於機械性質所造成之影響。 AISI 420不銹鋼鑄錠是採用瑞典Uddeholm公司製造之預熔合金顆粒(Granshot),其鑄件之製備係使用高週波熔煉爐,於一般大氣條件下進行。每一爐次加入7公斤之原始塊材,待溫度升至1700°C後開始進行持溫,持溫時間為1分鐘、10分鐘與30分鐘,並分別澆鑄於金屬模與乾砂模,鑄造凝固完成後之鋼錠,使用退火調質,再依流動方向取樣;接著進行淬火與低溫回火處理,藉以探討不同鑄造方式與持溫時間對於AISI 420不銹鋼顯微結構與機械性質之影響。 實驗結果顯示,AISI 420不銹鋼鑄造方法需在一定的熔融高溫下(1700°C),以提供金屬液凝固所需之驅動力,原始鑄錠的樹枝狀晶比率,隨持溫時間的增加而上升。較長持溫時間(30分鐘)的乾砂模鑄錠,經過熱處理後具有較佳的衝擊韌性,平均的衝擊值由7.63 J提升至14.3 J;相反地,由於較快的冷卻速率,較長持溫時間(30分鐘)的金屬模鑄件,經過熱處理後其衝擊值反而由5.77 J下降至2.93 J,顯示持溫時間的增加,對金屬模鑄件的韌性並沒有幫助。

英文摘要

This study compared various casting processes and soaking times on the microstructural and mechanical properties of AISI 420 stainless steel. The main discussions on microstructure included: grain size, carbide precipitation and failure analysis. The mechanical properties of hardness, impact and tensile tests were investigated, and elongation and reduction area inspections were performed. In addition, the effects on the mechanical properties of AISI 420 casting steel for different microstructures were also studied. In the research, the ingot of AISI 420 stainless steel used the granshot which was obtained from Sweden’s Uddeholm Company. The casts were produced by a high-frequency reaction melting furnace at an atmosphere condition. We usually added 7 kg of 420 granshot to the furnace and increased the melting temperature to 1700°C. The soaking time was kept at 1, 10 and 30 min. Meanwhile, the molten casting was formed into the different metal and epoxy resin patterns, respectively. When the castings had solidified, the specimens were cut and removed from the flow direction of the castings after the annealing process. Finally, the quenching and low-temperature tempering treatments were performed in order to investigate the various casting processes and soaking times on the microstructural and mechanical properties of AISI 420 stainless steel. The experimental results showed that AISI 420 stainless steel casting required a higher melting temperature (1700°C) to provide the driving force of solidification. Increasing the soaking time of the original 420 casting resulted in a higher dendrite rate. Furthermore, the optimal impact toughness of the 420 casting was obtained by the longer soaking time (30 min) of the epoxy resin patterns after heat treatment. The average value of impact energy of 7.63 J increased to 14.3 J. Conversely, the fast cooling rate resulted in poor toughness. The lowest impact energy of the 420 casting was obtained by the longer soaking time (30 min) of the metal pattern after heat treatment. The impact energy of 5.77 J was decreased to 2.93 J. This showed that increasing the soaking time of the metal pattern did not enhance the toughness of AISI 420 stainless steel.

主题分类 工程學院 > 材料科學與工程研究所
工程學 > 工程學總論
参考文献
  1. [1] Çetin, Z. Tek, A. Öztarhan and N. Artunç, "A comparative study of single and duplex treatment of martensitic AISI 420 stainless steel using plasma nitriding and plasma nitriding-plus-nitrogen ion implantation techniques," Surface and Coatings Technology, vol. 201, 2007, pp. 8127–8130.
    連結:
  2. [2] W. Tuckart, E. Forlerer and L. Iurman, "Delayed cracking in plasma nitriding of AISI 420 stainless steel," Surface and Coatings Technology, vol. 202, 2007, pp. 199–202.
    連結:
  3. [3] Yun-tao Xi, Dao-xin Liu and Dong Han, "Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature," Surface and Coatings Technology, vol. 202, 2008, pp. 2577–2583.
    連結:
  4. [4] Mahmoudi, M.J. Torkamany, A.R. Sabour Aghdam and J. Sabbaghzadeh, "Effect of laser surface hardening on the hydrogen embrittlement of AISI 420: Martensitic stainless steel," Materials & Design, vol. 32, 2011, pp. 2621–2627.
    連結:
  5. [5] J. I. Oñate, J. K. Dennis and S. Hamilto, "Wear behaviour of nitrogen-implanted AISI 420 martensitic stainless steel," Surface and Coatings Technology, vol. 42, 1990, pp. 119–131.
    連結:
  6. [6] Mahmoudi, M.J. Torkamany, A.R. Sabour Rouh Aghdam and J. Sabbaghzade, "Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd: YAG laser," Materials & Design, vol. 31, 2010, pp. 2553–2560.
    連結:
  7. [7] Wu, G. Q. Liu, L. Wang and B. F. Xu, "Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel," Vacuum, vol. 84, 2010, pp. 870–875.
    連結:
  8. [8] Muthukannan Duraiselvam, Rolf Galun, Volker Wesling, Barry L. Mordike, Rolf Reiter and Jörg Oligmüller, "Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement," Surface and Coatings Technology, vol. 201, 2006, pp. 1289–1295.
    連結:
  9. [17] William D. Callister. Jr. Materials science and engineering an introduction (sixth edition), United States of America: John Wiley & Sons, 2003, pp. 32–37.
    連結:
  10. [19] M. C. Tsai, C. S. Chiou, J. S. Du and J. R. Yang, "Phase transformation in AISI 410 stainless steel," Materials Science and Engineering, vol. 332, 2002, pp. 1-10.
    連結:
  11. [23] N. Terao and B. Sasmal, "Precipitation of M8C6 type carbide on twin boundaries in austenitic stainless steels," Metallography, vol. 13, 1980, pp. 25–34.
    連結:
  12. [24] H. U. Hong and S. W. Nam, "The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel," Materials Science and Engineering, vol. 332, 2002, pp. 261–255.
    連結:
  13. [25] Yun Soo Lim, Joung Soo Kim, Hong Pyo Kim, Hai Dong Cho, "The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated Alloy 690," Journal of Nuclear Materials, Vol. 335, 2004, pp. 108–114.
    連結:
  14. [26] M. Görnerup, P-Å. Lundström, "Iron Granulation to Maximise Throughput," Steel Times International, vol. 27, No. 7, October 2003, pp. 31-32.
    連結:
  15. [27] P-Å. Lundström, C. van der Westhuizen, R. Hattingh and M. Görnerup, "Pig Iron Granulation at Iscor Saldanha Steel," AISTech 2004 Conference proceedings, vol 1, 2004, pp. 517-524.
    連結:
  16. [29] Flemings M C, Solidification processing, New York: McGraw-Hill, 1974, pp. 3-9.
    連結:
  17. [31] C. Garc ́ıa de Andre ́s, G. Caruana, L.F. Alvarez, "Control of M23C6 carbides in 0.45C–13Cr martensitic stainless steel by means of three representative heat treatment parameters," Materials Science and Engineering, Vol. 241, 1998, pp. 211–215.
    連結:
  18. [32] G. R. Kegg and J. M. Silcock, "The shape of M23C6 particls," Scripta Metallurgica, vol. 6, 1972, pp. 1083–1086.
    連結:
  19. [33] A. Boeuf, R. Caciuffo, S. Crico, R. Rebonato, F. Rustichelli, and J. P. Morlevat, "Time dependence at 550 and 700°C of M23C6 precipitate composition in AISI 304 stainless steel," Materials Letters, vol. 2, 1983, pp. 49–52.
    連結:
  20. [34] De-ning Zou, Ying Han, Wei Zhang and Xu-dong Fang, "Influence of tempering process on mechanical properties of Cr13Ni4Mo supermartensitic Stainless Steel," Journal of Iron and Steel Research, vol. 17, 2010, pp. 50–54.
    連結:
  21. [35] Y. Y. Song, X. Y. Li, L. J. Rong, D. H. Ping, F. X. Yin and Y. Y. Li, "Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel," Materials Letters, vol. 64, 2010, pp. 1411–1414.
    連結:
  22. [36] Cheng-Hsun Hsu and Hwei-Yuan Teng, "Temperature effects on the static and dynamic fracture behaviors of low-silicon CA-15 tempered stainless steel castings," Journal of Nuclear Materials, vol. 340, 2005, pp. 1–11.
    連結:
  23. [38] David Kalish and Morris Cohen, "Structural changes and strengthening in the strain tempering of martensite," Materials Science and Engineering, Vol. 6, 1970, pp. 156–166.
    連結:
  24. [39] Arif Sugianto, Michiharu Narazaki, Minoru Kogawara and Atsushi Shirayori, "Failure analysis and prevention of quench crack," Engineering Failure Analysis, vol. 16, 2009, pp. 70-84.
    連結:
  25. [40] J. H. Ouyang, Y. T. Pei, X. D. Li and T. C. Lei, "Effect of tempering temperature on microstructure and sliding wear property of laser quenched 4Cr13 steel," Wear, vol. 177, 1994, pp. 203–208.
    連結:
  26. [41] Yi Luo, Jin-min Peng, Hong-bin Wang and Xiao-chun Wu, "Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel," Materials Science and Engineering, vol. 527, 2010, pp. 2433–3437.
    連結:
  27. [42] B. Qin, Z. Y. Wang and Q. S. Sun, "Effect of tempering temperature on properties of Cr16Ni5Mo stainless steel," Materials Characterization, vol. 59, 2008, pp. 1096–1100.
    連結:
  28. [46] Guolu Ding, Weidong Huang, Xin Lin, and Yaohe Zhou, "Predication of Average Spacing for Constrained Cellular/Dendrite Growth," Journal of Crystal Growth, vol. 177, 1997, pp. 281–288.
    連結:
  29. [48] 趙隆山 趙國傑 陳毓儒,「凝固參數對於方向性成長之結構參數影響分析」,鑄造工程學刊,第34卷,第3期(第138期),2008,第35-58頁。
    連結:
  30. [52] Marcio Gustavo Di Vernieri Cuppari, Frank Wischnowski, Deniol K. Tanaka, "Correlation between microstructure and cavitation–erosion resistance of high-chromium cast steel—preliminary results," Wear, vol. 225-229, 1999, pp. 517–522.
    連結:
  31. [53] 楊國和 洪敏雄,鑄造手冊(第二冊),台北市:中華民國鑄造學會,1997,第297頁。
    連結:
  32. [54] Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong and P.Y. Xiong, "Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions," Thin Solid Films, vol.492, 2005, pp. 93-100.
    連結:
  33. [55] Alphonsa, A. Chainani, P.M. Raole, B. Ganguli and P.I. John, " A study of martensitic stainless steel AISI 420 modified using plasma nitriding," Surface and Coatings Technology, vol.150, pp. 263-268.
    連結:
  34. 參考文獻
  35. [9] H. K. D. H. Bhadeshia and Sir Robert Honeycombe, Steels (Third Edition), Boston: Butterworth-Heinemann, 2006, pp. 259–286.
  36. [10] R. A. Lula, Stainless Steel, Ohio: Metal Park, 1993, pp. 3–32.
  37. [11] 李炯輝 林德成,金屬材料金相圖譜,北京:機械工業出版社,2006,第929-992頁。
  38. [12] Rodney P. Carlisle, Scientific American inventions and discoveries, United States of America: John Wiley & Sons, 2004, pp. 380.
  39. [13] 劉政軍、徐德昆,不銹鋼焊接及質量控制,北京:化學工業出版社,2008,第 2 頁。
  40. [14] 朱中平,不銹鋼號對照手冊,北京:化學工業出版社,2004,第236-241頁。
  41. [15] 願紀清,不銹鋼應用手冊,北京:化學工業出版社,2007,第329頁。
  42. [16] 王繼敏,不銹鋼與金屬腐蝕,台北市:科技圖書,1997,第16-20頁。
  43. [18] Edward H. Kottcamp and Jr. Edward L. Langer. Volume 3 of the ASM Handbook Alloy phase diagrams, the United States of America: ASM International, 1992, pp. 681.
  44. [20] 歐陽渭城、施議訓,模具熱處理,台北市:全華科技圖書股份有限公司,1993,第32-41頁。
  45. [21] 張森景,金屬模具之熱處理及表面硬化技術,台北市:全華科技圖書,1991,第16-20頁。
  46. [22] Assab, Uddeholm stavax esr brochure English version, published on www.uddeholm.com, 2008, pp. 4-5.
  47. [28] Kristina Beskow, Mathias Thorén and Per-Åke Lundström, "World’s First High-capacity Granshot® Iron Granulation in Operation at SSAB Oxelösund," AISTech 2009 Proceedings, vol 1, 2009, pp. 211-218.
  48. [30] 胡漢起,金屬凝固原理,北京市:機械工業出版社,2000,第 3-13 頁。
  49. [37] 黃振賢,金屬熱處理,台北市:文京圖書有限公司,1986,第101-113頁。
  50. [43] 莊東漢,材料破損分析,台北市:五南圖書出版股份有限公司,2007,第116-153頁。
  51. [44] 林震、林進成、張樹仁、陳志明、張進興、梁添財,機械工程實驗,台北市:新科技書局,1991,第13、36、134頁。
  52. [45] 張晉昌,鑄造學,台北縣:全華圖書股份有限公司,2008,第16-20頁。
  53. [47] 佐藤知雄,賴耿陽,鐵鋼組織顯微鏡圖說,台南市:復漢出版社,1992,第32-36頁。
  54. [49] 唐自標,機械工程實驗,台北市:東華書局股份有限公司,1991,第40-53頁。
  55. [50] Edward L. Tobolski, Jr. Volume 8 of the ASM Handbook Mechanical Testing and Evaluation, United States of America: ASM International, 2000, pp. 428-467.
  56. [51] Chang Yi Lee, Effect of Casting Thickness on Nodularity of Thin-walled Ductile Iron, Master Thesis, National Taipei University of Technology, Taiwan, 2009.
  57. [56] 許樹恩 吳泰伯,X光繞射原理與材料結構分析,新竹市:中國材料科學學會,1993,第121-219頁。