题名

以多壁奈米碳管及石墨烯修飾TiO2奈米顆粒製備光電極應用於染料敏化太陽能電池

并列篇名

Application of Multi-wall Carbon Nanotube and Graphene modified TiO2 nanoparticle to Dye-sensitized Solar Cells

DOI

10.6841/NTUT.2011.00468

作者

許芷瑄

关键词

染料敏化太陽能電池 ; 溶膠凝膠法 ; 多壁奈米碳管 ; 石墨烯 ; 奈米二氧化鈦 ; Dye-sensitized solar cells ; Sol-Gel method ; Multi-wall carbon nanotube(MWCNT) ; Graphene ; TiO2 nanoparticles

期刊名称

臺北科技大學化學工程研究所學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

段葉芳

内容语文

繁體中文

中文摘要

在染料敏化太陽能電池(DSSC)中奈米TiO2薄膜光電極是影響染料敏化太陽能電池光電特性的重要因素。本研究主要改善染料敏化太陽能電池元件中之工作電極暗電流的產生,所以在TiO2工作電極中添加導電性良好之材料,進而增進此太陽能電池的效率與穩定性。使用溶膠凝膠法製備二氧化鈦奈米顆粒,並在製備過程中分別添加多壁奈米碳管及石墨烯兩種導電性良好的材料,可以增加DSSC之短路電流密度(short-circuit current density),減少暗電流發生進而有效提升DSSC的光電轉換效率。使二氧化鈦奈米顆粒披覆在多壁奈米碳管(MWCNT)上;薄片狀石墨烯覆蓋在二氧化鈦奈米顆粒表面上,製備出 TiO2-CNTs和TiO2-Graphenes奈米複合粉末,作為染料敏化太陽能電池(DSSC)中之光電極材料。在DSSC光電極的製備上使用旋轉塗佈法將P25 TiO2奈米顆粒混合TiO2-CNTs、TiO2-Graphenes複合粉末塗佈在ITO導電玻璃上。經過太陽能光電轉換效率的測試結果顯示,添加TiO2-CNTs和TiO2-Graphenes奈米複合粉末可以增加電池短路電流密度(Isc),加入TiO2-CNTs奈米複合粉末讓DSSC的光電轉換效率從原先之3.5928 %最高提升到5.242 %,加入TiO2-Graphenes奈米複合粉末最高提升到5.619 %。

英文摘要

The nanocrystalline-TiO2 film is a crucial factor of photoelectrode performances in dye-sensitized solar cell. In this study, we decreased dark current generation in the working electrode of the dye-sensitized solar cell. By adding good conductivity materials into TiO2 working electrode and thereby enhanced the efficiency and stability of solar cells.We used sol-gel method to prepare nanoscale titanium dioxide (TiO2). During the preparation we added multi-walled carbon nanotubes and graphene that are well-conductive materials, since CNT and graphene can increase the short-circuit current density of DSSC therefore reduce the dark current generation, thus the light-to-electricity conversion effectively of DSSC can be effectively raised. We used TiO2-CNTs, TiO2 nanoparticles coated on the surface of the muti-wall carbon nanotubes, and TiO2-Graphene composite nanopowders, the graphene sheets covered heavily with TiO2 layer, as the photoelectrode materials for dye-sensitized solar cells (DSSC). The DSSC photoelectrodes were prepared by spin coating on transparent conductive Indium tin oxide (ITO) substrates. According to light-to-electricity conversion efficiency test, adding TiO2-CNTs and TiO2-Graphenes nano composite powders could increase the values of short-circuit current density (Isc) obviously, and also improved the light-to-electricity conversion efficiency from 3.5928 % to 5.242% by TiO2-CNTs and 5.619% by TiO2-Graphenes.

主题分类 工程學院 > 化學工程研究所
工程學 > 化學工業
参考文献
  1. [4] M. Grätzel, J. Photochem, Photobio. A., no.164, 2004 , pp.3.
    連結:
  2. [7] Cahen et al., J.Phys.Chem. B, no.104, 2000, pp.2053–2059.
    連結:
  3. [8] A. Fujishima et al., Sol. Energy Mater. Sol. Cells, no.81, 2004, pp.197–203.
    連結:
  4. [10] L. Brus, Phys. Rev. B﹐no.53, 1996, pp.4649–4656.
    連結:
  5. [11] Cahen et al., J. Phys. Chem. B, no.104, 2000, pp.2053–2059.
    連結:
  6. [12] J. Bisquert, J. Phys. Chem. B, no.106, 2002, pp.325–333.
    連結:
  7. [15] J. R. Macdonald, and W. R. Kenan, Impedance Spectroscopy, 1987.
    連結:
  8. [16] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 1991, pp. 56.
    連結:
  9. [17] S. Iijima, T. Ichihashi,. Y. Ando, “Pentagons, heptagons and negative curvature in graphite microtubule growth”, Nature 356, 1992, pp.776.
    連結:
  10. [18] S. C. Tsang, Y. K Chen, P. J .F Harris, M .L .H Green, “A simple chemical method of opening and filling carbon nanotubes”, Nature 372, 1994, pp.159.
    連結:
  11. [19] L. S. K. Pang, J. D. Saxby, S.P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and nanoparticles”, Journal of Physical Chemistry 97, 1993, pp.6941.
    連結:
  12. [21] S. Berber, Y. K. Kwon, D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters 84, 2000, pp.4613.
    連結:
  13. [22] M. A. Osman, D. Srivastava, “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, Nanotechnolory 12, 2001, pp.21.
    連結:
  14. [23] D. L. Carrol, Ph. Redlich, X. Blase, J. C. Charlier, S. P. M. Ajayan, S. Roth and M. Rühle, "Effects of Nanodomain Formation on the Electronic Structure of Doped Carbon Nanotubes," Phys. Rev. Lett., Vol. 81, 1998, pp.2332-2335.
    連結:
  15. [24] A. J. Stone, D. J. Wales, "Theoretical studies of icosahedral C60 and some related species," Chemical Physics Letters, Vol. 128, 1986, pp. 501-503.
    連結:
  16. [25] L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet, and P. Bernier, “Purification procedure of carbon nanotubes” Synthetic Metals 103, 1999, pp.2492.
    連結:
  17. [26] L. S. K. Pang, J. D. Saxby, S.P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and nanoparticles”, Journal of Physical Chemistry 97, 1993, pp.6941.
    連結:
  18. [27] S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature 362, 1993, pp.520.
    連結:
  19. [28] H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon, “Chromatographic purification and properties of soluble single-walled carbon nanotubes”, Journal of the American Chemical Society 123, 2001, pp.11673.
    連結:
  20. [29] A. R. Harutyunyan, B. K Pradhan, J. Chang, G. Chen, and P. C. Eklund, “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles” Journal of Physical Chemistry 106, 2002, pp.8671.
    連結:
  21. [30] K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, and Kiricsi, “Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes”, Solid State Ionics, 141, 2001, pp.203.
    連結:
  22. [31] Y. H. Li, S. Wang, Z. Luan, J. Ding, and C. Xu, “Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 2003, pp.1057.
    連結:
  23. [33] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chem. Commum., “Controlled adsorption of carbon nanotubes on chemically modified electrode arrays”, 10, 1998, pp.584.
    連結:
  24. [35] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. “Huffman, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physics Letters 282, 1998, pp.429.
    連結:
  25. [36] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
    連結:
  26. [37] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nat Nano, vol. 3, pp. 206-209, 2008.
    連結:
  27. [38] T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, "Extraordinary Mobility in Semiconducting Carbon Nanotubes," Nano Letters, vol. 4, pp. 35-39, 2004.
    連結:
  28. [39] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008.
    連結:
  29. [40] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, "Mechanical properties of suspended graphene sheets," 2007, pp. 2558-2561.
    連結:
  30. [42] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Letters, vol. 0, 2009.
    連結:
  31. [43] X. Wu, Y. Pei, and X. C. Zeng, "B2C Graphene, Nanotubes, and Nanoribbons," Nano Letters, vol. 9, pp. 1577-1582, 2009.
    連結:
  32. [44] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of grapheme films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
    連結:
  33. [45] X. Wang, L. Zhi, and K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., vol. 8, pp. 323-327, 2008.
    連結:
  34. [46] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, "Molecular Doping of Graphene," Nano Lett., vol. 8, pp. 173-177, 2008.
    連結:
  35. [47] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, pp. 073104-3, 2005.
    連結:
  36. [49] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 2008.
    連結:
  37. [50] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nat Nano, vol. 4, pp. 217-224, 2009.
    連結:
  38. [53] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, "Graphene-Based Liquid Crystal Device," Nano Lett., vol. 8, pp. 1704-1708, 2008.
    連結:
  39. [54] Y. Si and E. T. Samulski, "Synthesis of Water Soluble Graphene," Nano Lett., vol. 8, pp. 1679-1682, 2008.
    連結:
  40. [55] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat Nano, vol. 4, pp. 25-29, 2009.
    連結:
  41. [56] P. Yi, S. Dong-Xia, and G. Hong-Jun, "Formation of graphene on Ru(0001) surface," Chinese Physics, vol. 16, pp. 3151-3153, 2007.
    連結:
  42. [57] H. Z. Yi Pan, Dongxia Shi, Jiatao Sun, Shixuan Du, Feng Liu, Hong-jun Gao,, "Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001)," Advanced Materials, vol. 9999, p. NA, 2008.
    連結:
  43. [61] R. W. Fessenden, P. V. Kamat, J. Phys. Chem, no.99, 1995, pp.12902-12906.
    連結:
  44. [63] A. L. Linsebigler, G. Lu, J. T. Yates, ”Photocatalysis on TiO2 surface: Principles, mechanisms, and selscted results, ”Chemical Reviews, vol.95,no. 3,1995, pp.735-758
    連結:
  45. [65] Z. Jerman, Collect. Czech. Chem. Commun., 31, 1966, 3280
    連結:
  46. [68] T. Ma, T. Kida, M. Akiyama, K. Inoue, S. Tsunematsu, K. Yao, H. Noma, and E. Abe, “Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique,”Electrochem. Commun, 5 , 2003, pp. 369-372.
    連結:
  47. [69] A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. C. Bernard, N. Spyrellis, and P. Falaras, “Nanostructured TiO2 films for DSSCs prepared by combining doctor-blade and sol–gel techniques,”J. Mater. Process. Technol, 196 , 2008, pp. 243-248.
    連結:
  48. [71] Ferrere S., Gregg B. A., J. Am. Chem. Soc., no.120, 1998, pp.843.
    連結:
  49. [76] Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. Gordon, R. H. Baker, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. B, no.109, 2005, pp.15397.
    連結:
  50. S. Yanagida, Chem. Mater., no.16, 2004, pp.1806.
    連結:
  51. [82] G. Schlichthorl, S. Y. Huang, J. Sprague and A. J. Frank, Band Edge.
    連結:
  52. [83] K.Schwarzburg and F. J. Willig, J. Phys. Chem, B, no.103, 1999, pp.5743.
    連結:
  53. [85] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B. 107 , 2003, pp. 8981-8987.
    連結:
  54. [86] G. Boschloo, L. Haggman, A. Hagfeldt, “Quantification of the Effect of 4-tert-Butylpyridine Addition to I־/I3־ Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells”, J. Phys. Chem. B 110 , 2006, 13144-13150.
    連結:
  55. [87] G. Redmond, D. Fitzmaurice, “Spectroscopic Determination of Flatband Potentials for Polycrystalline Ti02 Electrodes in Nonaqueous Solvents”, J. Phys. Chem. 97 , 1993, pp.1426-1430.
    連結:
  56. [94] T. Y. Lee, P. S. Alegaonkar and J. Yoo, “Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes, “Thin Solid Films, vol. 515, no. 12, 2007, pp. 5131-5135.
    連結:
  57. [95] M. B. C. Fernanda, C. D. Marcia, S. A. Lairton, "Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly(propylene glycol): Synthesis and characterization," Journal of Applied Polymer Science, vol. 80, 2001, pp. 566-572.
    連結:
  58. [97] K. F. Zhou, Y. H. Zhu, X. L. Yang, X. Jiang and C. Z. Li, “Preparation of grapheme-TiO2 composites with enhanced photocatalytic activity.” New J. Chem. ,vol. 35, 2011, pp. 353-359.
    連結:
  59. [98] P. N. Zhu, A. S. Nair, S. G. Yang and R. Seeram,”TiO2-MWCNT rice grain-shaped nanocomposites: Synthesis, characterization and photocatalysis.” Materials Research Bulletin, vol. 46, 2011, pp. 588-595
    連結:
  60. [100] Su Q, Liang Y, Feng X, Mullen K. Towards free-standing grapheme /carbon nanotube composite films via acetyleneassisted thermolysis of organocobalt functionalized graphene sheets. Chem Commun 2010:8279–81.
    連結:
  61. [1] B. O’Regan, M and Grätzel, Nature, no.353, 1991, pp.737.
  62. [2] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Valchopoulos, M. Grätzel, J. Am. Chem. Soc, no.115, 1993, pp.6382.
  63. [3] 日本特許廳總務部技術調查課,2006。
  64. [5] A. Hagfeldt and M. Grätzel, Chem. Re, no.95, 1995, pp.49–68.
  65. [6] M. Grätzel, Current Opinion in Colloid and Interface Science, no.4, 1999, pp. 314–321.
  66. [9] Shogo Nakade, Yohei Makimoto, Wataru Kubo, Takayuki Kitamur, Yuji Wada, and Shozo Yanagida, J. Phys, Chem. B, no.109, 2005, pp.3480–3487.
  67. [13] Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, Langmuir, no.19, 2003, pp.3572.
  68. [14] Park, N.-G. L., J. v. d.; Frank, A. J., J. Phys. Chem. B, no.104, 2000, pp.8989-8994.
  69. [20] R. S. Ruoff, D. C. Lorent, Physical Review 33, 1995, pp.925.
  70. [32] Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei, Chem. Phys. Lett., 357, 2002, pp.263.
  71. [34] 石立節, "奈米碳管純化前後表面特性之變化",國立中央大學環境工程研究所碩士論文 , 2005.
  72. [41] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, October 22, 2004.
  73. [48] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
  74. [51] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, p. 1171245, May 7, 2009.
  75. [52] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, May 26 2006.
  76. [58] S. Marchini, S. Gunther, and J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru(0001)," Physical Review B (Condensed Matter and Materials Physics), vol. 76, pp. 075429-9, 2007.
  77. [59] A. Giraudeau, F. –R. F. Fan, A. J. Bard, J. Am. Chem. Soc, no.16, 1980, pp.102.
  78. [60] I. Bedjat, P. V. Kamat, J. Phys. Chem, no.99, 1995, pp.9182–9188.
  79. [62] P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub﹐J. Am. Chem. Soc, no.126, 2004, pp.3868–3879.
  80. [64] Yu. D. Dolmatov, Priklad, Zh., 42, 8, 1969, 1275
  81. [66] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras﹐ Langmuir, no.20, 2004, pp.2900–2907.
  82. [67] M. Grätzel, Nature, no.414, 2001, pp.338-344
  83. [70] 劉茂煌,工業材料雜誌,92年11月,203期
  84. [72] G. Sauve, M. E. Cass, S. J. Doig, I. Lauermann, K. Pomykal, N. S. Lewis, J. Phys. Chem. B, no.104, 2000, pp.3488.
  85. [73] P. Wang, C. Klein, J. E. Moser, R. H. Baker, N. Le, C. Ha, R. Charvet, P. Comte, S. M. Zakeeruddin, M. Grätzel, J. Phys. Chem. B, no.108, 2004, pp.17553.
  86. [74] A. Hagfeldt, M. Grätzel, Chem. Rev., no.95, 1995, pp.49.
  87. [75] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am.Chem. Soc., no.126, 2004, pp.12218.
  88. [77] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B, no.107, 2003, pp.597.
  89. [78] A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B, no.105, 2001, pp.9960.
  90. [79] T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, Neil, A.Anderson, X. Ai, T. Lian,
  91. [80] J. He, G. Benko, F. Korodi, T. Polivka, R. Lomoth, B. Akermark, L. Sun, A. Hagfeldt, V. Sundstrom, J. Am. Chem. Soc., no.124, 2002, pp.4922.
  92. [81] 張芳碩,染料敏化二氧化鈦光電化學太陽能電池研究,碩士論文,2003/07。
  93. [84] M K Nazeeruddin, A Kay, I Rodicio et, al.J.Am.Chem.Soc, no.115, 1993, pp.6382-6390.
  94. [88] S. Nakade, S. Kambe, T. Kitamura et, al. J. Phys. Chem. B, no.105, 2001, pp.9150-9152.
  95. [89] M. K. Nazeeruddin, A. Kay, I. Rodicio et, al. J. Am. Chem. Soc, no.115, 1993, pp.6382-6390.
  96. [90] 化學技術,鋰電池技術與現況,姚慶意,第七卷,第二期,1999。
  97. [91] 化學通報,染料敏化奈米薄膜太陽能電池電解質研究發展,第68卷,2005。
  98. [92] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc, no. 16, 1977, pp. 578.
  99. [93] M. Grätzel and A. J. Frank, J. Phys. Chem.B, no.101, 1997, pp.2576.
  100. [96] 黃嘉興教授及其研究生,舊材料的新見解,氧化石墨烯之界面活性,西北大學材料科學與工程系,2011/3/31
  101. [99] L. Han, N. Koide, Y. Chiba, and T. Mitate, Applied Physics Letters, on.84, 2004, pp.2433.