题名

功能性鈦金屬植體之結構與機械性質分析

并列篇名

Research of microstructural characteristics and biomechanical behaviors on titanium implant

作者

黃昱衡

关键词

型態 ; 牙科植體 ; 應力 ; morphologies ; dental implant ; stress

期刊名称

臺北醫學大學醫療器材產業碩士專班學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

林永和

内容语文

繁體中文

中文摘要

隨著人類生活水準提昇、壽命延長以及現代健康意識的抬頭,對於醫療器材品質功效更為要求,理想的骨科及牙科生醫材料必須具有良好生物相容性、抗蝕性佳、化學穩定性良好、能與周圍組織穩固地結合以及優良的機械特性。目前所使用醫療器械、骨支撐固定支架、人工牙根、骨釘、骨板,仍以鈦金屬以及不銹鋼等金屬材料為主,其中又以鈦金屬最接近理想生醫材料之特性,因此骨科及牙科醫療器材多以鈦金屬及其合金所製成,而不需長期植入人體之醫療器械則以較廉價之不銹鋼材料為主,隨著電子與醫學科技發展,以及大眾對於醫療服務品質意識抬頭,『微創醫療』儼然成為現代醫學新趨勢。本研究以鈦金屬及其合金執行物化性質分析,並進一步觀察經表面處理後之鈦金屬顯微結構以及疲勞測試試驗,期望可對鈦金屬於醫學工程上之應用做出貢獻。

英文摘要

The aim of the present study was to investigate the morphologies material properties in the titanium metals. Three-dimensional (3-D) mandible models were reconstructed using computer tomography to simulate the electrosurgical procedure. The treated layer of dental implant is a very important factor in clinical application. Several studies have investigated finite element models for dental implants, but few have examined a model for devices with treated layers. Data indicated that the stress decreased significantly when implants with nanostructured thin films were used. Moreover, surface treatment created a relatively small stress compared with control groups. The present study reveals that the novel nanostructured thin film on dental substrates is an effective means of improving the performance of reducing excessive stress effect and uniformly distributing stress in the mandible. However, further tests in the animal model and clinical trial must be evaluated to confirm the effect and safety of promising findings in the implants.

主题分类 醫藥衛生 > 醫藥總論
醫學工程學院 > 醫療器材產業碩士專班
参考文献
  1. [3] Steinemann, S.G., "Metal implants and surface reactions," Injury Volume 27, Supplement 3; SC16-SC22,SC49,SC52,SC55,SC58, (1996).
    連結:
  2. [4] Gurrappa, I., "Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications," Materials Characterization Volume 51, Issue 2-3, 131-139, (2003).
    連結:
  3. [5] Ergun, C.; Doremus, R.H.; Lanford, W.A., "Interface reactiondiffusion in hydroxylapatite-coated SS316L and CoCrMo alloys," Acta Materialia Volume 52, Issue 16, 4767-4772, (2004).
    連結:
  4. [6] Yang, Y.C.; Chang, E., "Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy," Surface and Coatings Technology Volume 190, Issue 1, 122-131, (2005).
    連結:
  5. [7] Yang, Y.; Liu, Z.; Luo, C.; Chuang, Y., "Measurements of residual stress and bond strength of plasma sprayed laminated coatings," Surface and Coatings Technology Volume 89, Issue 1-2, 97-100, (1997).
    連結:
  6. [8] Ünal, Ö.; Sordelet, D.J., "In-plane Tensile Strength and Residual Stress in Thick Al2O3 Coatings on Aluminum Alloy, " Scripta Materialia, Volume 42, Issue 7, 631-636, (2000).
    連結:
  7. [9] Martin JY., Schwartz Z. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J of Biomedical Materials Research. 29:389-401, 1995.
    連結:
  8. [10] Deligianni DD., Katsala N. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation, and detachment strength. Biomaterials. 22:87-96, 2001.
    連結:
  9. [11] Deligianni DD., Katsala N. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 22:1241-1251, 2001.
    連結:
  10. [12] Brunette DM., Kenner GS., Gould TRL. Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res. 62:1045-1048, 1983.
    連結:
  11. [13] Chehroudi B., Gould TRL., Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J of Biomedical Materials Research. 24:1203-1219, 1990.
    連結:
  12. [14] Wong M., Eulenberger J., Schenk R. Effect of surface topography on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res. 29:1567-1576, 1995.
    連結:
  13. [15] Schwartz Z., Martin JY. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J of Biomedical Materials Research. 30:145-155, 1996.
    連結:
  14. [16] Flemming RG., Murphy CJ. Abrams GA. Goodman SL. Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 20:573-588, 1999.
    連結:
  15. [17] Cheng H.C., S.Y. Lee, C.M. Tsai, C.C. Chen and K.L. Ou, “Effect of Hydrogen on Formation of Nanoporous TiO2 by Anodization with HF Pretreatment”, Electrochemical and Solid-State Letters, 9, D25 (2006).
    連結:
  16. [18] Cheng H.C., S.Y. Lee, C.C. Chen, Y.C. Shyng and K.L. Ou, “Titanium nanostructural surface processing for improved biocompatibility”, Applied Physics Letters, 89, pp. 173902-1~173902-3 (2006).
    連結:
  17. [19] Shih Y.H., C.T. Lin, C.M. Liu, C.C. Chen, C.S. Chen, and K.L. Ou, “Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti”, Applied Surface Science, in press, (2008).
    連結:
  18. [20] Cheng H.C., S.Y. Lee, C.C. Chen, Y.C. Shyng, and K.L. Ou, “Influence of Hydrogen Charging on the Formation of Nanostructural Titania by Anodizing with Cathodic Pretreatment”, Journal of The Electrochemical Society, in press, (2008).
    連結:
  19. [22] Shyng Y.C., H. Devlin, and K.L. Ou, “Bone Formation Around Oral Implants In Diabetic Rats”, International Journal of Prosthodontics, 19(5),pp. 513-514 (2006).
    連結:
  20. [23] Lange R, Luthen F, Beck U., et al. “Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material”, Biomol. Eng.,(19),pp.255-261(2002).
    連結:
  21. [3] Steinemann, S.G., "Metal implants and surface reactions," Injury Volume 27, Supplement 3; SC16-SC22,SC49,SC52,SC55,SC58, (1996).
    連結:
  22. [4] Gurrappa, I., "Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications," Materials Characterization Volume 51, Issue 2-3, 131-139, (2003).
    連結:
  23. [5] Ergun, C.; Doremus, R.H.; Lanford, W.A., "Interface reactiondiffusion in hydroxylapatite-coated SS316L and CoCrMo alloys," Acta Materialia Volume 52, Issue 16, 4767-4772, (2004).
    連結:
  24. [6] Yang, Y.C.; Chang, E., "Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy," Surface and Coatings Technology Volume 190, Issue 1, 122-131, (2005).
    連結:
  25. [7] Yang, Y.; Liu, Z.; Luo, C.; Chuang, Y., "Measurements of residual stress and bond strength of plasma sprayed laminated coatings," Surface and Coatings Technology Volume 89, Issue 1-2, 97-100, (1997).
    連結:
  26. [8] Ünal, Ö.; Sordelet, D.J., "In-plane Tensile Strength and Residual Stress in Thick Al2O3 Coatings on Aluminum Alloy, " Scripta Materialia, Volume 42, Issue 7, 631-636, (2000).
    連結:
  27. [9] Martin JY., Schwartz Z. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J of Biomedical Materials Research. 29:389-401, 1995.
    連結:
  28. [10] Deligianni DD., Katsala N. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation, and detachment strength. Biomaterials. 22:87-96, 2001.
    連結:
  29. [11] Deligianni DD., Katsala N. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 22:1241-1251, 2001.
    連結:
  30. [12] Brunette DM., Kenner GS., Gould TRL. Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res. 62:1045-1048, 1983.
    連結:
  31. [13] Chehroudi B., Gould TRL., Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J of Biomedical Materials Research. 24:1203-1219, 1990.
    連結:
  32. [14] Wong M., Eulenberger J., Schenk R. Effect of surface topography on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res. 29:1567-1576, 1995.
    連結:
  33. [15] Schwartz Z., Martin JY. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J of Biomedical Materials Research. 30:145-155, 1996.
    連結:
  34. [16] Flemming RG., Murphy CJ. Abrams GA. Goodman SL. Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 20:573-588, 1999.
    連結:
  35. [17] Cheng H.C., S.Y. Lee, C.M. Tsai, C.C. Chen and K.L. Ou, “Effect of Hydrogen on Formation of Nanoporous TiO2 by Anodization with HF Pretreatment”, Electrochemical and Solid-State Letters, 9, D25 (2006).
    連結:
  36. [18] Cheng H.C., S.Y. Lee, C.C. Chen, Y.C. Shyng and K.L. Ou, “Titanium nanostructural surface processing for improved biocompatibility”, Applied Physics Letters, 89, pp. 173902-1~173902-3 (2006).
    連結:
  37. [19] Shih Y.H., C.T. Lin, C.M. Liu, C.C. Chen, C.S. Chen, and K.L. Ou, “Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti”, Applied Surface Science, in press, (2008).
    連結:
  38. [20] Cheng H.C., S.Y. Lee, C.C. Chen, Y.C. Shyng, and K.L. Ou, “Influence of Hydrogen Charging on the Formation of Nanostructural Titania by Anodizing with Cathodic Pretreatment”, Journal of The Electrochemical Society, in press, (2008).
    連結:
  39. [22] Shyng Y.C., H. Devlin, and K.L. Ou, “Bone Formation Around Oral Implants In Diabetic Rats”, International Journal of Prosthodontics, 19(5),pp. 513-514 (2006).
    連結:
  40. [23] Lange R, Luthen F, Beck U., et al. “Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material”, Biomol. Eng.,(19),pp.255-261(2002).
    連結:
  41. [1] Huang, N.; Yang, P.; Leng, Y.X.; Chen, J.Y.; Sun, H.; Wang, J.; Wang, G.J.; Ding, P.D.; Xi, T.F.; Leng, Y., "Hemocompatibility of titanium oxide films," Biomaterials Volume 24, Issue 13, 2177-2187, (2003).
  42. [2] Zhang, F.; Huang, N.; Yang, P.; Zeng, X.; Mao, Y.; Zheng, Z.; Zhou, Z.; et. al., "Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition," Surface and Coatings Technology Volume 84, Issue 1-3, 476-479, (1996).
  43. [21] Chen C.L., C.C. Chen, K.L. Ou, and M.H. Lin, “Research of microstructure and biocompatible properties on Fe-Al-Mn alloy with recast layer by electro-discharge machining”, Journal of Chinese Society of Mechanical Engineers, in press, (2008).
  44. [1] Huang, N.; Yang, P.; Leng, Y.X.; Chen, J.Y.; Sun, H.; Wang, J.; Wang, G.J.; Ding, P.D.; Xi, T.F.; Leng, Y., "Hemocompatibility of titanium oxide films," Biomaterials Volume 24, Issue 13, 2177-2187, (2003).
  45. [2] Zhang, F.; Huang, N.; Yang, P.; Zeng, X.; Mao, Y.; Zheng, Z.; Zhou, Z.; et. al., "Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition," Surface and Coatings Technology Volume 84, Issue 1-3, 476-479, (1996).
  46. [21] Chen C.L., C.C. Chen, K.L. Ou, and M.H. Lin, “Research of microstructure and biocompatible properties on Fe-Al-Mn alloy with recast layer by electro-discharge machining”, Journal of Chinese Society of Mechanical Engineers, in press, (2008).