题名

異甜菊醇衍生物NC-8之藥物動力學

并列篇名

Pharmacokinetics of an isosteviol derivative NC-8

作者

巴克斯

关键词

異甜菊醇衍生物NC-8之藥物動力學 ; Pharmacokinetics ; isosteviol-derivative ; NC-8

期刊名称

臺北醫學大學藥學系(碩博士班)學位論文

卷期/出版年月

2018年

学位类别

博士

导师

林淑娟

内容语文

英文

中文摘要

異甜菊醇衍生物NC-8之藥物動力學

英文摘要

NC-8 (ent-16-oxobeyeran-19-N-methylureido) is a semi-synthetic isosteviol derivative that has shown anti-hepatitis B virus activity in Huh7 cells affecting viral DNA transcription, viral gene expression and the TLR2/NF-B signaling pathway. Thus, this study of the pharmacokinetics and metabolite identification was done as a part of development of NC-8. NC-8 was synthesized from isosteviol to get quantity sufficient for animal study, with satisfactory purity. The synthesized NC-8 is with ≥ 97 % purity. A bioanalytical method for the analysis of NC-8 in rat plasma was developed and validated. The pharmacokinetics of NC-8 was evaluated after administration at intravenous dose of 2 mg/kg, and oral doses of 2, 5 and 10 mg/kg in rats. Plasma concentrations were determined using LC-MS/MS and while urine samples from rats dosed at 10 mg/kg were scanned for metabolites using UPLC-QTOF-MS/MS. Method development and validation resulted in a lower limit of quantitation of 0.5 ng/ml. The linear scope of the standard curve was between 0.5 and 500 ng/ml (r2 = 0.9967). Both the precision (coefficient of variation; %) and accuracy (relative error; %) were within acceptable criteria of < 15 %. Recoveries ranged from 104 % to 113.4 %, and the matrix effects (absolute) were non-significant (CV ≤ 6 %). The validated method was successfully applied to investigate the pharmacokinetics of NC-8 in male Sprague-Dawley rats. The results for intravenously administered 2 mg/kg dose showed that the area under the concentration-time curve (AUC), the half-life (t1/2), steady state volume of distribution (Vss) and the systemic clearance (Cl) were 65,223.31 ± 4,269.79 ng/ml.min, 35.46 ± 7.94 min, 0.63 ± 0.032 L and 0.031 ± 0.0021 L/min, respectively. After oral administration, the pharmacokinetic parameters showed dose dependent increase. Increases in dose produced non-proportional increases in oral AUCs with values of 4,371.62 ± 3,084.81, 22,472.75 ± 9,103.33 and 135,141.83 ± 38,934.03 ng/ml.min for 2, 5 and 10 mg/kg, respectively. The clearance decreased with increase in oral dose. The bioavailability was low at approximately 1% for 2, 5 and 10 mg/kg oral doses. Oxidized and glucuronide conjugated urine metabolites of NC-8 were postulated. The method developed and validated provided an analytical means to better understand the preliminary pharmacokinetics of NC-8 for investigations on further drug development. The results showed dose-dependent pharmacokinetics of NC-8 and this could be due to saturable intestinal and hepatic first-pass effect. The metabolites excreted in urine indicate possible N-oxidation and glucuronide conjugation as part of metabolic pathways.

主题分类 醫藥衛生 > 藥理醫學
藥學院 > 藥學系(碩博士班)
参考文献
  1. 1. Stevens E. The Modern Drug Discovery Process. Medicinal Chemistry: The Modern Drug Discovery Process. New York: Pearson Education, Inc.; 2014. p. 13-33.
    連結:
  2. 2. Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev. 2007;59(7):546-67.
    連結:
  3. 3. Chatelain E, Ioset JR. Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther. 2011;5:175-81.
    連結:
  4. 5. Anderson DC, Kodukula K. Biomarkers in pharmacology and drug discovery. Biochem Pharmacol. 2014;87(1):172-88.
    連結:
  5. 6. Benjamin A, Nogueira da Costa A, Delaunois A, Rosseels ML, Valentin JP. Renal Safety Pharmacology in Drug Discovery and Development. Handbook of experimental pharmacology. 2015;229:323-52.
    連結:
  6. 7. Fredholm BB, Fleming WW, Vanhoutte PM, Godfraind T. The role of pharmacology in drug discovery. Nat Rev Drug Discov. 2002;1(3):237-8.
    連結:
  7. 8. Huang C, Zheng C, Li Y, Wang Y, Lu A, Yang L. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform. 2014;15(5):710-33.
    連結:
  8. 9. Luo F, Gu J, Chen L, Xu X. Systems pharmacology strategies for anticancer drug discovery based on natural products. Mol Biosyst. 2014;10(7):1912-7.
    連結:
  9. 10. Morimoto BH, Castelloe E, Fox AW. Safety Pharmacology in Drug Discovery and Development. Handbook of experimental pharmacology. 2015;229:65-80.
    連結:
  10. 11. Sorger PK, Schoeberl B. An expanding role for cell biologists in drug discovery and pharmacology. Mol Biol Cell. 2012;23(21):4162-4.
    連結:
  11. 12. Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, et al. Exploratory toxicology as an integrated part of drug discovery. Part II: Screening strategies. Drug Discov Today. 2014;19(8):1137-44.
    連結:
  12. 13. Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, et al. Exploratory toxicology as an integrated part of drug discovery. Part I: Why and how. Drug Discov Today. 2014;19(8):1131-6.
    連結:
  13. 14. Khan SR, Baghdasarian A, Fahlman RP, Michail K, Siraki AG. Current status and future prospects of toxicogenomics in drug discovery. Drug Discov Today. 2014;19(5):562-78.
    連結:
  14. 15. Shi H, Tian S, Li Y, Li D, Yu H, Zhen X, et al. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chem Res Toxicol. 2015; 28(1):116-25.
    連結:
  15. 16. Harrigan GG, Brackett DJ, Boros LG. Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics. Mini Rev Med Chem. 2005;5(1):13-20.
    連結:
  16. 17. Abad-Zapatero C, Champness EJ, Segall MD. Alternative variables in drug discovery: promises and challenges. Future Med Chem. 2014;6(5):577-93.
    連結:
  17. 18. Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest. 2014;124(1):64-9.
    連結:
  18. 19. Chen C, Liu X, Smith BJ. Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokinetics and pharmacodynamics in drug discovery and development. Curr Drug Metab. 2003;4(4):272-91.
    連結:
  19. 20. de Mooij-van Malsen AJ, Pjetri E, Kas MJ. The genetic and epigenetic landscape for CNS drug discovery targeting cross-diagnostic behavioral domains. Eur J Pharmacol. 2015;753:135-9.
    連結:
  20. 21. Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther. 2014;143(3):275-94.
    連結:
  21. 22. Mai A. Targeting epigenetics in drug discovery. ChemMedChem. 2014;9(3):415-7.
    連結:
  22. 23. Yasgar A, Simeonov A. Current approaches for the discovery of drugs that deter substance and drug abuse. Expert Opin Drug Discov. 2014;9(11):1319-31.
    連結:
  23. 24. Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, Martin RJ, Sager H, et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist. 2014;4(3):164-84.
    連結:
  24. 25. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-81.
    連結:
  25. 26. Anania VG, Lill JR. Proteomic tools for the characterization of cell death mechanisms in drug discovery. Proteomics Clin Appl. 2015;9(7-8):671-83.
    連結:
  26. 27. Gokgoz NB, Akbulut BS. Proteomics evidence for the activity of the putative antibacterial plant alkaloid (-)-roemerine: Mainstreaming omics-guided Drug discovery. OMICS. 2015;19(8):478-89.
    連結:
  27. 28. Jung HJ, Kwon HJ. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharm Res. 2015;38(9):1627-41.
    連結:
  28. 29. Maes M, Nowak G, Caso JR, Leza JC, Song C, Kubera M, et al. Toward omics-based, systems biomedicine, and path and drug discovery methodologies for depression-inflammation research. Mol Neurobiol. 2016;53(5):2927-2935
    連結:
  29. 30. Morris MK, Chi A, Melas IN, Alexopoulos LG. Phosphoproteomics in drug discovery. Drug Discov Today. 2014;19(4):425-32.
    連結:
  30. 31. Zhang HM, Nan ZR, Hui GQ, Liu XH, Sun Y. Application of genomics and proteomics in drug target discovery. Genet Mol Res. 2014;13(1):198-204.
    連結:
  31. 32. Speck-Planche A, Cordeiro MN. Review of current chemoinformatic tools for modeling important aspects of CYPs-mediated drug metabolism. Integrating metabolism data with other biological profiles to enhance drug discovery. Curr Drug Metab. 2014;15(4):429-40.
    連結:
  32. 33. Szlezak N, Evers M, Wang J, Perez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin Pharmacol Ther. 2014;95(5):492-5.
    連結:
  33. 34. Anacker C. Fresh approaches to antidepressant drug discovery. Expert Opin Drug Discov. 2014;9(4):407-21.
    連結:
  34. 35. Chen Q, Luo H, Zhang C, Chen YP. Bioinformatics in protein kinases regulatory network and drug discovery. Math Biosci. 2015;262:147-56.
    連結:
  35. 36. Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, et al. Antibody informatics for drug discovery. Biochim Biophys Acta. 2014;1844(11):2002-15.
    連結:
  36. 37. Wishart DS. Bioinformatics in drug development and assessment. Drug Metab Rev. 2005;37(2):279-310.
    連結:
  37. 38. Zhang T, Wei D. Recent progress on structural bioinformatics research of cytochrome P450 and its impact on drug discovery. Adv Exp Med Biol. 2015;827:327-39.
    連結:
  38. 39. Ambre PK, Wavhale RD, Coutinho EC. New horizons in antimalarial drug discovery in the last decade by chemoinformatic approaches. Comb Chem High Throughput Screen. 2015;18(2):129-50.
    連結:
  39. 40. Ekins S, Lage de Siqueira-Neto J, McCall LI, Sarker M, Yadav M, Ponder EL, et al. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Negl Trop Dis. 2015;9(6):e0003878. doi: 10.1371/journal.pntd.0003878..
    連結:
  40. 41. Karthikeyan M, Vyas R. Role of open source tools and resources in virtual screening for drug discovery. Comb Chem High Throughput Screen. 2015;18(6):528-43.
    連結:
  41. 42. Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, et al. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep. 2014;31(11):1585-611.
    連結:
  42. 43. Medina-Franco JL, Mendez-Lucio O, Martinez-Mayorga K. The interplay between molecular modeling and chemoinformatics to characterize protein-ligand and protein-protein interactions landscapes for drug discovery. Adv Protein Chem Struct Biol. 2014;96:1-37.
    連結:
  43. 44. Toropov AA, Toropova AP. Editorial: From chemoinformatics to nanoinformatics: New tools for drug discovery and nanoparticles design in medicinal chemistry. Curr Top Med Chem. 2015;15(18):1767.
    連結:
  44. 46. Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15(19):2184-94.
    連結:
  45. 47. Kell DB, Goodacre R. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today. 2014;19(2):171-82.
    連結:
  46. 48. Leenders J, Frederich M, de Tullio P. Nuclear magnetic resonance: a key metabolomics platform in the drug discovery process. Drug Discov Today Technol. 2015;13:39-46.
    連結:
  47. 49. Mastrangelo A, Armitage EG, Garcia A, Barbas C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem. 2014;14(23):2627-36.
    連結:
  48. 50. Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal. 2015;107:63-74.
    連結:
  49. 51. Powers R. The current state of drug discovery and a potential role for NMR metabolomics. J Med Chem. 2014;57(14):5860-70.
    連結:
  50. 52. Vincent IM, Barrett MP. Metabolomic-based strategies for anti-parasite drug discovery. J Biomol Screen. 2015;20(1):44-55.
    連結:
  51. 53. Brana MF, Sanchez-Migallon A. Anticancer drug discovery and pharmaceutical chemistry: a history. Clin Transl Oncol. 2006;8(10):717-28.
    連結:
  52. 54. Colombo M, Peretto I. Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov Today. 2008;13(15-16):677-84.
    連結:
  53. 55. Jansen DJ, Shenvi RA. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med Chem. 2014;6(10):1127-48.
    連結:
  54. 56. Kumar BV, Sriram D, Yogeeswari P. Editorial: recent trends in library design and virtual screening in medicinal chemistry and drug discovery. Curr Top Med Chem. 2014;14(16):1865.
    連結:
  55. 57. Lindsley CW. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: drug discovery targeting allosteric sites. J Med Chem. 2014;57(18):7485-98.
    連結:
  56. 58. MacCoss M, Baillie TA. Organic chemistry in drug discovery. Science. 2004;303(5665):1810-3.
    連結:
  57. 59. Potoski J. Timely synthetic support for medicinal chemists. Drug Discov Today. 2005;10(2):115-20.
    連結:
  58. 60. Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl. 2014;53(34):8840-69.
    連結:
  59. 61. Ruiz-Garcia A, Bermejo M, Moss A, Casabo VG. Pharmacokinetics in drug discovery. J Pharm Sci. 2008;97(2):654-90.
    連結:
  60. 62. Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997;49(4):403-49.
    連結:
  61. 63. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neuro Rx. 2005;2(4):554-71.
    連結:
  62. 65. Jang GR, Harris RZ, Lau DT. Pharmacokinetics and its role in small molecule drug discovery research. Med Res Rev. 2001;21(5):382-96.
    連結:
  63. 66. Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49(Suppl 5):S13-21.
    連結:
  64. 68. Ashtari S, Pourhoseingholi MA, A. S, MR. Z. Hepatocellular carcinoma in Asia: Prevention strategy and planning. World J Hepatol. 2015;7(12):1708-17.
    連結:
  65. 69. Venook AP, Papandreou C, Furuse J, Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist. 2010;15(Suppl 4):5-13.
    連結:
  66. 70. Gomaa AI, I. W. Recent advances in multidisciplinary management of hepatocellular carcinoma. World journal of hepatology. 2015;7(4):673-87.
    連結:
  67. 71. Nordenstedta H, Whiteb DL, El-Serag HB. The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):206-14.
    連結:
  68. 72. Liang X, Yang L, Qin AR, Ly J, Liederer BM, Messick K, et al. Measuring NAD(+) levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis. 2014;6(11):1445-57.
    連結:
  69. 73. Kim DY, Han KH. Epidemiology and surveillance of hepatocellular carcinoma. Liver cancer. 2012;1(1):2-14.
    連結:
  70. 74. Jemal A, Bray F, Center MM, Jacques F, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.
    連結:
  71. 75. de Martel C, Maucort-Boulch D, Plummer M, Franceschi S. Worldwide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma. Hepatology. 2015;62(4):1190-200.
    連結:
  72. 76. Tarocchi M, Polvani S, Marroncini G, Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J Gastroenterol. 2014;20(33):11630-40.
    連結:
  73. 77. Aspinall EJ, Hawkins G, Fraser A, Hutchinson SJ, Goldberg D. Hepatitis B prevention, diagnosis, treatment and care: a review. Occup Med (Lond). 2011;61(8):531-40.
    連結:
  74. 78. Lin CL, Kao JH. Perspectives and control of hepatitis B virus infection in Taiwan. J Formos Med Assoc. 2015;114(10):901-9.
    連結:
  75. 79. Su WW, Chen CH, Lin HH, Yang SS, Chang TT, Cheng KS, et al. Geographic variations of predominantly hepatitis C virus associated male hepatocellular carcinoma townships in Taiwan: identification of potential high HCV endemic areas. Hepatol Int. 2009;3(4):537-43.
    連結:
  76. 80. Chen CJ, Yang HI. Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol. 2011;26(4):628-38.
    連結:
  77. 81. Grimm D, Thimme R, Blum HE. HBV life cycle and novel drug targets. Hepatol Int. 2011;5(2):644-53.
    連結:
  78. 82. Deny P, Zoulim F. Hepatitis B virus: from diagnosis to treatment. Pathol Biol (Paris). 2010;58(4):245-53.
    連結:
  79. 83. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480:672-86.
    連結:
  80. 84. You CR, Lee SW, Jang JW, Yoon SK. Update on hepatitis B virus infection. World J Gastroenterol. 2014;20(37):13293-305.
    連結:
  81. 85. Shi YH, Shi CH. Molecular characteristics and stages of chronic hepatitis B virus infection. World J Gastroenterol. 2009;15(25):3099-105.
    連結:
  82. 86. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris). 2010;58(4):258-66.
    連結:
  83. 87. Urban S, Schulze A, Dandri M, Petersen J. The replication cycle of hepatitis B virus. J Hepatol. 2010;52(2):282-4.
    連結:
  84. 88. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3):581-92.
    連結:
  85. 89. Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61(Suppl 1):i6-17.
    連結:
  86. 90. Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol. 2007;13(1):48-64.
    連結:
  87. 91. Inan N, F. T. Hepatitis B virus: Biology and life cycle. J Viral Hepat. 2015;21(1):1-7.
    連結:
  88. 92. Gao S, Duan ZP, Coffin CS. Clinical relevance of hepatitis B virus variants. World J Hepatol. 2015;7(8):1086-96.
    連結:
  89. 93. Zeisel MB, Lupberger J, Fofana I, Baumert TF. Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol. 2013;58(2):375-84.
    連結:
  90. 95. Chen J, Yuan Z. Interplay between hepatitis B virus and the innate immune responses: implications for new therapeutic strategies. Virol Sin. 2014;29(1):17-24.
    連結:
  91. 96. Durantel D, Zoulim F. Interplay between hepatitis B virus and TLR2-mediated innate immune responses: can restoration of TLR2 functions be a new therapeutic option? J Hepatol. 2012;57(3):486-9.
    連結:
  92. 97. Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy? Virus Res. 2003;92(2):131-40.
    連結:
  93. 98. Lok AS. Personalized treatment of hepatitis B. Clin Mol Hepatol. 2015;21(1):1-6.
    連結:
  94. 99. Perrillo RP. Current treatment of chronic hepatitis B: benefits and limitations. Semin Liver Dis. 2005;25(Suppl 1):20-8.
    連結:
  95. 100. Yuen MF, Lai CL. Treatment of chronic hepatitis B: Evolution over two decades. J Gastroenterol Hepatol. 2011;26(Suppl 1):138-43.
    連結:
  96. 101. Delaney WEt. Molecular virology of chronic hepatitis B and C: parallels, contrasts and impact on drug development and treatment outcome. Antiviral Res. 2013;99(1):34-48.
    連結:
  97. 102. Fletcher SP, Delaney WEt. New therapeutic targets and drugs for the treatment of chronic hepatitis B. Semin Liver Dis. 2013;33(2):130-7.
    連結:
  98. 103. Ghany M, Liang TJ. Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B. Gastroenterology. 2007;132(4):1574-85.
    連結:
  99. 104. Hynicka LM, Yunker N, Patel PH. A review of oral antiretroviral therapy for the treatment of chronic hepatitis B. Ann Pharmacother. 2010;44(7-8):1271-86.
    連結:
  100. 105. Li H, Zhu W, Zhang L, Lei H, Wu X, Guo L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep. 2015;5:8421.
    連結:
  101. 106. Stein LL, Loomba R. Drug targets in hepatitis B virus infection. Infect Disord Drug Targets. 2009;9(2):105-16.
    連結:
  102. 107. Wang XY, Chen HS. Emerging antivirals for the treatment of hepatitis B. World J Gastroenterol. 2014;20(24):7707-17.
    連結:
  103. 108. Zoulim F, Locarnini S. Optimal management of chronic hepatitis B patients with treatment failure and antiviral drug resistance. Liver Int. 2013;33(Suppl 1):116-24.
    連結:
  104. 110. Khungar V, Han SH. A systematic review of side effects of nucleoside and nucleotide drugs used for treatment of chronic hepatitis B. Curr Hepat Rep. 2010;9(2):75-90.
    連結:
  105. 111. Sun P, Yang X, He RQ, Hu QG, Song ZF, Xiong J, et al. Antiviral therapy after curative treatment of hepatitis B/C virus-related hepatocellular carcinoma: A systematic review of randomized trials. Hepatol Res. 2014;44(3):259-69.
    連結:
  106. 112. Xia BW, Zhang YC, Wang J, Ding FH, He XD. Efficacy of antiviral therapy with nucleotide/nucleoside analogs after curative treatment for patients with hepatitis B virus-related hepatocellular carcinoma: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2015;39(4):458-68.
    連結:
  107. 113. Zhao SS, Tang LH, Dai XH, Wang W, Zhou RR, Chen LZ, et al. Comparison of the efficacy of tenofovir and adefovir in the treatment of chronic hepatitis B: a systematic review. Virol J. 2011;8:111.
    連結:
  108. 114. Lee HW, Chang HY, Yang SY, Kim HJ. Viral evolutionary changes during tenofovir treatment in a chronic hepatitis B patient with sequential nucleos(t)ide therapy. J Clin Virol. 2014;60(3):313-6.
    連結:
  109. 115. Fung J, Lai CL, Seto WK, Yuen MF. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. J Antimicrob Chemother. 2011;66(12):2715-25.
    連結:
  110. 116. Menendez-Arias L, Alvarez M, Pacheco B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Curr Opin Virol. 2014;8:1-9.
    連結:
  111. 117. Mukaide M, Tanaka Y, Shin IT, Yuen MF, Kurbanov F, Yokosuka O, et al. Mechanism of entecavir resistance of hepatitis B virus with viral breakthrough as determined by long-term clinical assessment and molecular docking simulation. Antimicrob Agents Chemother. 2010;54(2):882-9.
    連結:
  112. 118. Chang J, Guo F, Zhao X, Guo J-T. Therapeutic strategies for a functional cure of chronic hepatitis B virus infection. Acta Pharm Sin B. 2014;4(4):248-57.
    連結:
  113. 119. Bertoletti A, Rivino L. Hepatitis B: future curative strategies. Curr Opin Infect Dis. 2014;27(6):528-34.
    連結:
  114. 120. Guo H, Zhou T, Jiang D, Cuconati A, Xiao GH, Block TM, et al. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway. J Virol. 2007;81(18):10072-80.
    連結:
  115. 121. Rawat S, Bouchard MJ. The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol. 2015;89(2):999-1012.
    連結:
  116. 122. Robek MD, Boyd BS, Wieland SF, Chisari FV. Signal transduction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci USA. 2004;101(6):1743-7.
    連結:
  117. 123. Jiang J, Tang H. Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein cell. 2010;1(12):1106-17.
    連結:
  118. 124. Liu D, Wu A, Cui L, Hao R, Wang Y, He J, et al. Hepatitis B virus polymerase suppresses NF-kappaB signaling by inhibiting the activity of IKKs via interaction with Hsp90beta. PLoS One. 2014;9(3):e91658.
    連結:
  119. 125. Huang TJ, Chou BH, Lin CW, Weng JH, Chou CH, Yang LM, et al. Synthesis and antiviral effects of isosteviol-derived analogues against the hepatitis B virus. Phytochemistry. 2014;99:107-14.
    連結:
  120. 126. Vestergaard B, Agerso H, Lykkesfeldt J. Nephrectomized and hepatectomized animal models as tools in preclinical pharmacokinetics. Basic Clin Pharmacol Toxicol. 2013;113(2):75-86.
    連結:
  121. 127. Chen J, Li W, Yao H, Xu J. Insights into drug discovery from natural products through structural modification. Fitoterapia. 2015;103:231-41.
    連結:
  122. 128. Lahlou M. The Success of Natural Products in Drug Discovery. Pharmacol Pharm. 2013;4:17-31.
    連結:
  123. 129. De Marco Almeida F, de Castro Pimenta AM, Oliveira MC, De Lima ME. Venoms, toxins and derivatives from the Brazilian fauna: valuable sources for drug discovery. Sheng Li Xue Bao. 2015;67(3):261-70.
    連結:
  124. 130. Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193-200.
    連結:
  125. 131. Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF. Spider venomics: implications for drug discovery. Future Med Chem. 2014;6(15):1699-714.
    連結:
  126. 132. Shih SP, Lee MG, El-Shazly M, Juan YS, Wen ZH, Du YC, et al. Tackling the cytotoxic effect of a marine polycyclic Quinone-type metabolite: Halenaquinone induces Molt 4 cells apoptosis via oxidative stress combined with the inhibition of HDAC and topoisomerase activities. Mar Drugs. 2015;13(5):3132-53.
    連結:
  127. 133. Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 2012;19(1):85-98.
    連結:
  128. 134. Leal MC, Puga J, Serodio J, Gomes NC, Calado R. Trends in the discovery of new marine natural products from invertebrates over the last two decades--where and what are we bioprospecting? PLoS one. 2012;7(1):e30580.
    連結:
  129. 135. Zulkipli IN, David SR, Rajabalaya R, Idris A. Medicinal Plants: A Potential Source of Compounds for Targeting Cell Division. Drug Target Insights. 2015;9:9-19.
    連結:
  130. 136. Oniyangi O, Cohall DH. Phytomedicines (medicines derived from plants) for sickle cell disease. Cochrane Database Syst Rev. 2015;4:CD004448.
    連結:
  131. 137. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging. Boschstr. 12, 69469 Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA,; 2015.
    連結:
  132. 138. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.
    連結:
  133. 139. Miller LH, Su X. Artemisinin: discovery from the Chinese herbal garden. Cell. 2011;146(6):855-8.
    連結:
  134. 140. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-36.
    連結:
  135. 141. Bauer A, Bronstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014;31(1):35-60.
    連結:
  136. 142. Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery. Org Biomol Chem. 2015;13(23):6432-48.
    連結:
  137. 143. Szychowski J, Truchon JF, Bennani YL. Natural products in medicine: transformational outcome of synthetic chemistry. J Med Chem. 2014;57(22):9292-308.
    連結:
  138. 144. Akihisa T, Hamasaki Y, Tokuda H, Ukiya M, Kimura Y, Nishino H. Microbial transformation of isosteviol and inhibitory effects on Epstein-Barr virus activation of the transformation products. J Nat Prod. 2004;67(3):407-10.
    連結:
  139. 145. Chou BH, Yang LM, Chang SF, Hsu FL, Lo CH, Liaw JH, et al. Microbial transformation of isosteviol lactone and evaluation of the transformation products on androgen response element. J Nat Prod. 2008;71(4):602-7.
    連結:
  140. 146. Chang SF, Chou BH, Yang LM, Hsu FL, Lin WK, Ho Y, et al. Microbial transformation of isosteviol oxime and the inhibitory effects on NF-kappaB and AP-1 activation in LPS-stimulated macrophages. Bioorg Med Chem. 2009;17(17):6348-53.
    連結:
  141. 147. Chou BH, Yang LM, Chang SF, Hsu FL, Wang LH, Lin WK, et al. Transformation of isosteviol lactam by fungi and the suppressive effects of its transformed products on LPS-induced iNOS expression in macrophages. J Nat Prod. 2011;74(6):1379-85.
    連結:
  142. 148. Chang SF, Yang LM, Huang TJ, Chen CY, Sheu SY, Liu PC, et al. Biotransformation of dihydroisosteviol and the effects of transformed products on steroidogenic gene expressions. Phytochemistry. 2013;95:268-76.
    連結:
  143. 149. Wu Y, Yang JH, Dai GF, Liu CJ, Tian GQ, Ma WY, et al. Stereoselective synthesis of bioactive isosteviol derivatives as alpha-glucosidase inhibitors. Bioorg Med Chem. 2009;17(4):1464-73.
    連結:
  144. 150. Lin LH, Lee LW, Sheu SY, Lin PY. Study on the stevioside analogues of steviolbioside, steviol, and isosteviol 19-alkyl amide dimers: synthesis and cytotoxic and antibacterial activity. Chem Pharm Bull. 2004;52(9):1117-22.
    連結:
  145. 151. Wu Y, Dai GF, Yang JH, Zhang YX, Zhu Y, Tao JC. Stereoselective synthesis of 15- and 16-substituted isosteviol derivatives and their cytotoxic activities. Bioorg Med Chem Lett. 2009;19(6):1818-21.
    連結:
  146. 152. Zhang T, Lu LH, Liu H, Wang JW, Wang RX, Zhang YX, et al. D-ring modified novel isosteviol derivatives: design, synthesis and cytotoxic activity evaluation. Bioorg Med Chem Lett. 2012;22(18):5827-32.
    連結:
  147. 153. Ukiya M, Sawada S, Kikuchi T, Kushi Y, Fukatsu M, Akihisa T. Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against human cancer cell lines. Chem Biodivers. 2013;10(2):177-88.
    連結:
  148. 154. Zhu SL, Wu Y, Liu CJ, Wei CY, Tao JC, Liu HM. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg Med Chem Lett. 2013;23(5):1343-6.
    連結:
  149. 155. Wang TT, Liu Y, Chen L. Synthesis and cytotoxic activity of nitric oxide-releasing isosteviol derivatives. Bioorg Med Chem Lett. 2014;24(9):2202-5.
    連結:
  150. 156. Ogawa T, Nozaki M, Matsui M. Tota lsynthesis of stevioside. Tetrahedron. 1980;36(18):2641-8.
    連結:
  151. 157. Geuns JMC. Molecules of Interest. Stevioside. Phytochemistry. 2003;64:913-21.
    連結:
  152. 158. Stevia: The genus stevia: CRS press; 2001. P. 55-7.
    連結:
  153. 159. Brahmachari G, Mandal LC, Roy R, Mondal S, Brahmachari AK. Stevioside and related compounds - molecules of pharmaceutical promise: a critical overview. Archiv der Pharmazie. 2011;344(1):5-19.
    連結:
  154. 161. Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol. 2008;51(1):37-41.
    連結:
  155. 164. Boonkaewwan C, Ao M, Toskulkao C, Rao MC. Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. J Agric Food Chem. 2008;56(10):3777-84.
    連結:
  156. 165. Chatsudthipong V, Jutabha P. Effect of steviol on para-aminohippurate transport by isolated perfused rabbit renal proximal tubule. J Pharmacol Exp Ther. 2001;298(3):1120-7.
    連結:
  157. 166. Toskulkao C, Sutheerawattananon M, Piyachaturawat P. Inhibitory effect of steviol, a metabolite of stevioside, on glucose absorption in everted hamster intestine in vitro. Toxicol Lett. 1995;80(1-3):153-9.
    連結:
  158. 167. Melis MS, Rocha ST, Augusto A. Steviol effect, a glycoside of Stevia rebaudiana, on glucose clearances in rats. Braz J Biol. 2009;69(2):371-4.
    連結:
  159. 168. Terai T, Ren H, Mori G, Yamaguchi Y, Hayashi T. Mutagenicity of steviol and its oxidative derivatives in Salmonella typhimurium TM677. Chem Pharm Bull. 2002;50(7):1007-10.
    連結:
  160. 169. Matsui M, Matsui K, Kawasaki Y, Oda Y, Noguchi T, Kitagawa Y, et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis. 1996;11(6):573-9.
    連結:
  161. 170. Brusick DJ. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem Toxicol. 2008;46(Suppl 7):S83-91.
    連結:
  162. 171. Geuns JM, Bruggeman V, Buyse JG. Effect of stevioside and steviol on the developing broiler embryos. J Agric Food Chem. 2003;51(17):5162-7.
    連結:
  163. 172. Matsui M, Sofuni T, Nohmi T. Regionally-targeted mutagenesis by metabolically-activated steviol: DNA sequence analysis of steviol-induced mutants of guanine phosphoribosyltransferase (gpt) gene of Salmonella typhimurium TM677. Mutagenesis. 1996;11(6):565-72.
    連結:
  164. 175. Avent AG, Hanson JR, de Oliveira BH. Hydrolysis of the diterpenoid glycoside, stevioside. Phytochemistry. 1990;29(8):2712-5.
    連結:
  165. 176. Takasaki M, Konoshima T, Kozuka M, Tokuda H, Takayasu J, Nishino H, et al. Cancer preventive agents. Part 8: Chemopreventive effects of stevioside and related compounds. Bioorg Med Chem. 2009;17(2):600-5.
    連結:
  166. 177. Xu D, Du W, Zhao L, Davey AK, Wang J. The neuroprotective effects of isosteviol against focal cerebral ischemia injury induced by middle cerebral artery occlusion in rats. Planta Med. 2008;74(8):816-21.
    連結:
  167. 178. Wong KL, Lin JW, Liu JC, Yang HY, Kao PF, Chen CH, et al. Antiproliferative effect of isosteviol on angiotensin-II-treated rat aortic smooth muscle cells. Pharmacology. 2006;76(4):163-9.
    連結:
  168. 179. Mizushina Y, Akihisa T, Ukiya M, Hamasaki Y, Murakami-Nakai C, Kuriyama I, et al. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005;77(17):2127-40.
    連結:
  169. 180. Yamamoto NS, Kelmer Bracht AM, Ishii EL, Kemmelmeier FS, Alvarez M, Bracht A. Effect of steviol and its structural analogues on glucose production and oxygen uptake in rat renal tubules. Experientia. 1985;41(1):55-7.
    連結:
  170. 181. Chen X, Hermansen K, Jeppesen PB. Impact of glucagon-like peptide-1 (7-36) amide, isosteviol and 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside on leucine-mediated alpha-cell dysfunction. Diabetes Obes Metab. 2012;14(11):1020-31.
    連結:
  171. 182. Chen X, Hermansen K, Xiao J, Bystrup SK, O'Driscoll L, Jeppesen PB. Isosteviol has beneficial effects on palmitate-induced alpha-cell dysfunction and gene expression. PLoS One. 2012;7(3):e34361.
    連結:
  172. 183. Nordentoft I, Jeppesen PB, Hong J, Abudula R, Hermansen K. Isosteviol increases insulin sensitivity and changes gene expression of key insulin regulatory genes and transcription factors in islets of the diabetic KKAy mouse. Diabetes Obes Metab. 2008;10(10):939-49.
    連結:
  173. 184. Xu D, Xu M, Lin L, Rao S, Wang J, Davey AK. The effect of isosteviol on hyperglycemia and dyslipidemia induced by lipotoxicity in rats fed with high-fat emulsion. Life Sci. 2012;90(1-2):30-8.
    連結:
  174. 185. Xu D, Zhang S, Foster DJ, Wang J. The effects of isosteviol against myocardium injury induced by ischaemia-reperfusion in the isolated guinea pig heart. Clin Exp Pharmacol Physiol. 2007;34(5-6):488-93.
    連結:
  175. 186. Xu D, Li Y, Wang J, Davey AK, Zhang S, Evans AM. The cardioprotective effect of isosteviol on rats with heart ischemia-reperfusion injury. Life Sci. 2007;80(4):269-74.
    連結:
  176. 187. Liu JC, Kao PF, Hsieh MH, Chen YJ, P. C. The antihypertensive effect of stevioside derivative isosteviol in spontaneously hypertensive rats. Acta Cardiol Sin. 2001;17:133-40.
    連結:
  177. 188. Wong KL, Chan P, Yang HY, Hsu FL, Liu IM, Cheng YW, et al. Isosteviol acts on potassium channels to relax isolated aortic strips of Wistar rat. Life Sci. 2004;74(19):2379-87.
    連結:
  178. 189. Wong KL, Yang HY, Chan P, Cheng TH, Liu JC, Hsu FL, et al. Isosteviol as a potassium channel opener to lower intracellular calcium concentrations in cultured aortic smooth muscle cells. Planta Med. 2004;70(2):108-12.
    連結:
  179. 190. Kataev VE, Strobykina I, Andreeva OV, Garifullin BF, Sharipova RR, Mironov VF, et al. [Synthesis and antituberculosis activity of the derivatives of glycoside steviolbioside from the plant Stevia rebaudiana and diterpenoid isosteviol containing hydrazone, hydrazide and pyridinoyl moieties]. Bioorg Khim. 2011;37(4):542-51.
    連結:
  180. 191. Zhang T, Lu LH, Liu H, Wang JW, Wang RX, Zhang YX, et al. D-ring modified novel isosteviol derivatives: Design, synthesis and cytotoxic activity evaluation. Bioorg Med Chem Lett. 2012;22(18):5827-32..
    連結:
  181. 192. Lin CL, Lin SJ, Huang WJ, Ku YL, Tsai TH, Hsu FL. Novel ent-Beyeran-19-oic acids from biotransformations of isosteviol metabolites by Mortierella isabellina. Planta Med. 2007;73(15):1581-7.
    連結:
  182. 193. Chang SF, Yang LM, Lo CH, Liaw JH, Wang LH, Lin SJ. Microbial transformation of isosteviol and bioactivities against the glucocorticoid/androgen response elements. J Nat Prod. 2008;71(1):87-92.
    連結:
  183. 194. Hsu FL, Hou CC, Yang LM, Cheng JT, Chi TC, Liu PC, et al. Microbial transformations of isosteviol. J Nat Prod. 2002;65(3):273-7.
    連結:
  184. 195. Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, et al. Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett. 2003;13(20):3549-52.
    連結:
  185. 196. Flekhter OB, Boreko EI, Nigmatullina LR, Tret'yakova EV, Pavlova NI, Baltina LA, et al. Synthesis and antiviral activity of ureides and carbamates of betulinic acid and its derivatives. Russ J Bioorganic Chem. 2003;29(6):594-600.
    連結:
  186. 197. Huang TJ, Yang CL, Kuo YC, Chang YC, Yang LM, Chou BH, et al. Synthesis and anti-hepatitis B virus activity of C4 amide-substituted isosteviol derivatives. Bioorg Med Chem. 2015;23(4):720-8.
    連結:
  187. 198. Li X, Zhong X, Chen ZH, Xing YF, Wu DH, Chen J, et al. Hepatitis B virus DNA negativity acts as a favorable prognostic factor in hepatocellular carcinoma patients. Asian Pac J Cancer Prev. 2014;15(22):9635-41.
    連結:
  188. 199. Liu WR, Tian MX, Jin L, Yang LX, Ding ZB, Shen YH, et al. High levels of hepatitis B surface antigen are associated with poorer survival and early recurrence of hepatocellular carcinoma in patients with low hepatitis B viral loads. Ann Surg Oncol. 2015;22(3):843-50.
    連結:
  189. 200. Hung CM, Huang WC, Pan HL, Chien PH, Lin CW, Chen LC, et al. Hepatitis B virus X upregulates HuR protein level to stabilize HER2 expression in hepatocellular carcinoma cells. Biomed Res Int. 2014;2014:827415.
    連結:
  190. 201. Xu C, Zhou W, Wang Y, Qiao L. Hepatitis B virus-induced hepatocellular carcinoma. Cancer Lett. 2014;345(2):216-22.
    連結:
  191. 202. Chen TM, Chang CC, Huang PT, Wen CF, Lin CC. Performance of risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B) score in classifying treatment eligibility under 2012 Asian Pacific Association for the Study of the Liver (APASL) guideline for chronic hepatitis B patients. Aliment Pharmacol Ther. 2013;37(2):243-51.
    連結:
  192. 205. Revelsky IA, Chernetsova ES, Luzyanin BP, Fedoseeva MV, Glazkov IN, Revelsky AI. Organic elemental analysis: a new universal approach to authenticity/quality control of pharmaceuticals. Drug Test Anal. 2010;2(9):452-4.
    連結:
  193. 206. Smith BR, Eastman CM, Njardarson JT. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J Med Chem. 2014;57(23):9764-73.
    連結:
  194. 208. Brodniewicz T, Grynkiewicz G. Preclinical drug development. Acta Pol Pharm. 2010;67(6):578-85.
    連結:
  195. 209. Robinson R, Stokes R. Electrolyte solutions. Butterworths, London; 1959.
    連結:
  196. 210. Aiken AC, DeCarlo PF, Jimenez JL. Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Anal Chem. 2007;79(21):8350-8.
    連結:
  197. 211. Takeda K, Ichijo N, Noda Y, Takegoshi K. Elemental analysis by NMR. J Magn Reson. 2012;224:48-52.
    連結:
  198. 212. Trejos T, Koons R, Becker S, Berman T, Buscaglia J, Duecking M, et al. Cross-validation and evaluation of the performance of methods for the elemental analysis of forensic glass by mu-XRF, ICP-MS, and LA-ICP-MS. Anal Bioanal Chem. 2013;405(16):5393-409.
    連結:
  199. 214. Li P, Zhao L. Developing early formulations: practice and perspective. Int J Pharm. 2007;341(1-2):1-19.
    連結:
  200. 215. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.
    連結:
  201. 216. Saal C, Petereit AC. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks. Eur J Pharm Sci. 2012;47(3):589-95.
    連結:
  202. 217. Perlovich GL. Thermodynamic approaches to the challenges of solubility in drug discovery and development. Mol Pharm. 2014;11(1):1-11.
    連結:
  203. 218. Bharate SS, Vishwakarma RA. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery. Bioorg Med Chem Lett. 2015;25(7):1561-7.
    連結:
  204. 220. Kerns EH, Di L, Carter GT. In vitro solubility assays in drug discovery. Curr Drug Metab. 2008;9(9):879-85.
    連結:
  205. 221. Kreye O, Hatice Mutlu H, Meier MAR. Sustainable routes to polyurethane precursors. Green Chem. 2013(15 ):1431-55
    連結:
  206. 223. Polyethylene glycol [MAK Value documentation, 1998]. The MAK-Collection for occupational health and safety: Wiley-VCH Verlag GmbH & Co. KGaA; 2002.
    連結:
  207. 224. Prentice DE, Majeed SK. Oral toxicity of polyethylene glycol (PEG 200) in monkeys and rats. Toxicol Lett. 1978;2(2):119-22.
    連結:
  208. 225. Rebecca SL. Final report on the safety sssessment of polyethylene glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M. Int J Toxicol. 1993;12(5):429-57.
    連結:
  209. 226. Koh HL, Yau WP, Ong PS, Hegde A. Current trends in modern pharmaceutical analysis for drug discovery. Drug Discov Today. 2003;8(19):889-97.
    連結:
  210. 227. Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arab J Chem. 2017;10: S1409–21.
    連結:
  211. 229. Jin H, Gerber JP, Wang J, Ji M, Davey AK. Oral and i.v. pharmacokinetics of isosteviol in rats as assessed by a new sensitive LC-MS/MS method. J Pharm Biomed Anal. 2008;48(3):986-90.
    連結:
  212. 230. Bashaw ED, DeSilva B, Rose MJ, Wang YM, Shukla C. Bioanalytical method validation: concepts, expectations and challenges in small molecule and macromolecule--a report of PITTCON 2013 symposium. AAPS J. 2014;16(3):586-91.
    連結:
  213. 231. James CA, Breda M, Frigerio E. Bioanalytical method validation: a risk-based approach? J Pharm Biomed Anal. 2004;35(4):887-93.
    連結:
  214. 232. Tiwari G, Tiwari R. Bioanalytical method validation: An updated review. Pharm Methods. 2010;1(1):25-38.
    連結:
  215. 233. Zhou M. Fundamental elements and structures for regulated bioanalytical laboratories. Regulated bioanalytical laboratories: John Wiley & Sons, Inc.; 2011. p. 131-66.
    連結:
  216. 234. Swartz M. HPLC Detectors: A brief review. J Liq Chromatogr. 2010;33(9-12):1130-50.
    連結:
  217. 235. Crotti S, Posocco B, Marangon E, Nitti D, Toffoli G, Agostini M. Mass spectrometry in the pharmacokinetic studies of anticancer natural products. Mass Spectrom Rev. 2015.
    連結:
  218. 236. Feng WY. Mass spectrometry in drug discovery: a current review. Curr Drug Discov Technol. 2004;1(4):295-312.
    連結:
  219. 237. Michnowicz J. Mass spectrometry in drug discovery and development. Nat Rev Drug Discov. 2002;1(8):651.
    連結:
  220. 238. Wingfield J, Wilson ID. Advances in mass spectrometry within drug discovery. J Biomol Screen. 2016;21(2):109-10.
    連結:
  221. 240. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217(25):3929-37.
    連結:
  222. 241. Studzińska S, Buszewski B. Effect of mobile phase pH on the retention of nucleotides on different stationary phases for high-performance liquid chromatography. Anal Bioanal Chem. 2013;405(5):1663-72.
    連結:
  223. 243. Bylda C, Thiele R, Kobold U, Volmer DA. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst. 2014;139(10):2265-76.
    連結:
  224. 244. Kole PL, Venkatesh G, Kotecha J, Sheshala R. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr. 2011;25(1-2):199-217.
    連結:
  225. 246. EMA. Guideline on bioanalytical method validation; 2012. p. 1-22.
    連結:
  226. 248. Abay ET, van der Westhuizen JH, Swart KJ, Gibhard L, Tukulula M, Chibale K, et al. The development and validation of an LC-MS/MS method for the determination of a new anti-malarial compound (TK900D) in human whole blood and its application to pharmacokinetic studies in mice. Malar J. 2014;13:42.
    連結:
  227. 249. Krull IS, Swartz M. Analytical method development and validation for the academic researcher. Anal Lett. 1999;32(6):1067-80.
    連結:
  228. 250. Kosjek T, Heath E, Perez S, Petrovic M, Barcelo D. Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole - time-of-flight mass spectrometry. J Hydrol. 2009;372(1-4):109-17.
    連結:
  229. 251. Cui Y, Li Q, Zhang M, Liu Z, Yin W, Liu W, et al. LC-MS determination and pharmacokinetics of p-coumaric acid in rat plasma after oral administration of p-coumaric acid and freeze-dried red wine. J Agric Food Chem. 2010;58(23):12083-8.
    連結:
  230. 252. Liu YQ, He GH, Li HL, He JC, Feng EF, Bai L, et al. Plasma pharmacokinetics and tissue distribution study of roemerine in rats by liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci. 2014;969:249-55.
    連結:
  231. 254. Geuns JM, Buyse J, Vankeirsbilck A, Temme EH, Compernolle F, Toppet S. Identification of steviol glucuronide in human urine. J Agric Food Chem. 2006;54(7):2794-8.
    連結:
  232. 255. Roberts A, Renwick AG. Comparative toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol in rats. Food Chem Toxicol. 2008;46(Suppl 7):S31-9.
    連結:
  233. 256. Koyama E, Sakai N, Ohori Y, Kitazawa K, Izawa O, Kakegawa K, et al. Absorption and metabolism of glycosidic sweeteners of stevia mixture and their aglycone, steviol, in rats and humans. Food Chem Toxicol. 2003;41(6):875-83.
    連結:
  234. 257. Wang D, Sima M, Mosley RL, Davda JP, Tietze N, Miller SC, et al. Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl)methacrylamide copolymers. Mol Pharm. 2006;3(6):717-25.
    連結:
  235. 258. Nebendhal K. Routes of administration. In: Krinke GJ, editor. The laboratory rat, 2000. p. 463-82.
    連結:
  236. 259. Diehl K-H, Hull r, Morton D, Rudolf Pfister P, Rabemampianina Y, David Smith D, et al. A good practice guide to the administration of substances and removal of blood,including routes and volumes. J Appl Toxicol. 2001; 21(1):15-23.
    連結:
  237. 260. Handbook of experimental animals: The laboratory rat; 2000.
    連結:
  238. 261. Joslin JO. Blood collection techniques in exotic small mammals. J Exot Pet Med. 2009;18(2):117-39.
    連結:
  239. 262. Cai X, Zhong B, Su B, Xu S, Guo B. Development and validation of a rapid LC-MS/MS method for the determination of JCC76, a novel antitumor agent for breast cancer, in rat plasma and its application to a pharmacokinetics study. Biomed Chromatogr. 2012;26(9):1118-24.
    連結:
  240. 263. Gao Y, Xu J, Xu J, Huang Y, Shen Y, Liu Z. A rapid and sensitive LC-MS/MS assay for the quantitation of deacetyl mycoepoxydiene in rat plasma with application to preclinical pharmacokinetics studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;880(1):1-5.
    連結:
  241. 264. He F, Dou DQ, Sun Y, Zhu L, Xiao HB, Kang TG. Plasma pharmacokinetics and tissue distribution of arctiin and its main metabolite in rats by HPLC-UV and LC-MS. Planta Med. 2012;78(8):800-6.
    連結:
  242. 265. Toutain PL, Bousquet-Melou A. Bioavailability and its assessment. J Vet Pharmacol Ther. 2004;27(6):455-66.
    連結:
  243. 266. Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol. 2014;87(1):93-120.
    連結:
  244. 267. Yanez JA, Remsberg CM, Sayre CL, Forrest ML, Davies NM. Flip-flop pharmacokinetics--delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv. 2011;2(5):643-72.
    連結:
  245. 268. Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, et al. Single-dose clinical pharmacokinetic studies of gefitinib. Clin Pharmacokinet. 2005;44(11):1165-77.
    連結:
  246. 269. Toutain PL, Bousquet-Melou A. Plasma terminal half-life. J Vet Pharmacol Ther. 2004;27(6):427-39.
    連結:
  247. 270. Kachingwe BH, Uang YS, Huang TJ, Wang LH, Lin SJ. Development and validation of an LC-MS/MS method for quantification of NC-8 in rat plasma and its application to pharmacokinetic studies. J Food Drug Anal. 2017: https://doi.org/10.1016/j.jfda.2017.09.003
    連結:
  248. 271. Garrison KL, Sahin S, Benet LZ. Few drugs display flip-flop pharmacokinetics and these are primarily associated with classes 3 and 4 of the BDDCS. J Pharm Sci. 2015;104(9):3229-35.
    連結:
  249. 273. Schmitt-Hoffmann A, Roos B, Maares J, Heep M, Spickerman J, Weidekamm E, et al. Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother. 2006;50(1):286-93.
    連結:
  250. 274. Lee JH, Choi YH, Suh JH, Kang HE, Lee TH, Cho IH, et al. Dose-dependent pharmacokinetics of SP-8203 in rats. Biopharm Drug Dispos. 2010;31(5-6):358-61.
    連結:
  251. 275. Choi YH, Lee YS, Bae SH, Kim TK, Lee BY, Lee MG. Dose-dependent pharmacokinetics and first-pass effects of mirodenafil, a new erectogenic, in rats. Biopharm Drug Dispos. 2009;30(6):305-17.
    連結:
  252. 276. Deng Y, Wang Q, Liu X, Wang Y, Ding Z. Dose-dependent pharmacokinetics of tyrosol galactoside as an anti-fatigue drug in rats. Arzneimittelforschung. 2011;61(8):435-8.
    連結:
  253. 277. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26(9):2039-54.
    連結:
  254. 278. Liang Y, Li S, Chen L. The physiological role of drug transporters. Protein Cell. 2015;6(5):334-50.
    連結:
  255. 279. Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;300(3):1036-45.
    連結:
  256. 280. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11-23.
    連結:
  257. 281. Foye WO, Lemke TL, Williams DA. Foye's principles of medicinal chemistry: Lippincott Williams & Wilkins; 2008.
    連結:
  258. 282. Cashman JR, Lyubimov AV. Flavin-Containing Monooxygenase: The Role of flavin-containing Monooxgenase in lead design and selection. Encyclopedia of drug metabolism and interactions: John Wiley & Sons, Inc.; 2011.
    連結:
  259. 283. Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch Biochem Biophys. 2014;544:2-17.
    連結:
  260. 284. Caira MR, Ionescu C. Drug metabolism: current concepts: Springer Science & Business Media; 2006.
    連結:
  261. 286. Hosey CM, Chan R, Benet LZ. BDDCS predictions, self-correcting aspects of BDDCS assignments, BDDCS assignment corrections, and classification for more than 175 additional drugs. AAPS J. 2016;18(1):251-60.
    連結:
  262. 287. Benet LZ. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol. 2010;106(3):162-7.
    連結:
  263. 288. Liu X, Jia L. The conduct of drug metabolism studies considered good practice (I): Analytical systems and in vivo studies. Curr Drug Metab. 2007;8(8):815-21.
    連結:
  264. 289. Levsen K, Schiebel H-M, Behnke B, Dötzer R, Dreher W, Elend M, et al. Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview. J Chromatogr A. 2005;1067(1–2):55-72.
    連結:
  265. 290. Liu J, Zhao Z, Teffera Y. Application of on-line nano-liquid chromatography/mass spectrometry in metabolite identification studies. Rapid Commun Mass Spectrom. 2012;26(3):320-6.
    連結:
  266. 291. Holčapek M, Kolářová L, Nobilis M. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem. 2008;391(1):59-78.
    連結:
  267. 292. Babaev VM, Musin RZ, Strobykina IY, Kataev VE, Gavrilov VI. Studies of isosteviol diterpenoid derivatives by mass spectrometry: II. Fragmentation of isosteviol esters under the electronic impact. Russ J Gen Chem. 2011;81(6):1185-9.
    連結:
  268. 293. Musin RZ, Babaev VM, Strobykina IY, Kataev VE, Gavrilov VI, Musin RR. Mass spectra of isosteviol derivatives: I. Fragmentation of isosteviol derivatives having a schiff base fragment on C-4 under eElectron impact. Russ J Gen Chem. 2009;79(11):2377-82.
    連結:
  269. 294. Piehowski PD, Carado AJ, Kurczy ME, Ostrowski SG, Heien ML, Winograd N, et al. MS/MS methodology to improve sub-cellular mapping of cholesterol using ToF-SIMS. Anal Chem. 2008;80(22):8662-7.
    連結:
  270. 295. Jin H, Wang J, Gerber JP, Davey AK. Disposition of isosteviol in the rat isolated perfused liver. Clin Exp Pharmacol Physiol. 2010;37(5-6):593-7.
    連結:
  271. 297. Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol. 2006;2(6):895-921.
    連結:
  272. 298. Strolin Benedetti M. FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics. Ann Pharm Fr. 2011;69(1):45-52.
    連結:
  273. 299. Benedetti MS. Biotransformation of xenobiotics by amine oxidases. Fundam Clin Pharmacol. 2001;15(2):75-84.
    連結:
  274. 300. Strolin Benedetti M, Tipton KF, Whomsley R. Amine oxidases and monooxygenases in the in vivo metabolism of xenobiotic amines in humans: has the involvement of amine oxidases been neglected? Fundam Clin Pharmacol. 2007;21(5):467-80.
    連結:
  275. 301. Testa B, Kramer SD. The biochemistry of drug metabolism--an introduction: Part 2. Redox reactions and their enzymes. Chem Biodivers. 2007;4(3):257-405.
    連結:
  276. 302. Testa B, Kramer SD. The biochemistry of drug metabolism--an introduction: part 3. Reactions of hydrolysis and their enzymes. Chem Biodivers. 2007;4(9):2031-122.
    連結:
  277. 303. Schulz-Utermoehl T, Spear M, Pollard CR, Pattison C, Rollison H, Sarda S, et al. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology. Drug Metab Dispos. 2010;38(10):1688-97.
    連結:
  278. 304. Parte P, Kupfer D. Oxidation of hamoxifen by human flavin-containing monoxygenase (FMO) 1 and FMO3 FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab Dispos. 2005;33(10):1446-52.
    連結:
  279. 306. Iribarne C, Berthou F, Baird S, Dréano Y, Picart D, Bail JP, et al. Involvement of Cytochrome P450 3A4 Enzyme in the N-Demethylation of Methadone in Human Liver Microsomes. Chem Res Toxicol. 1996;9(2):365-73.
    連結:
  280. 307. Imai T, Taketani M, Suzu T, Kusube K, Otagiri M. In Vitro Identification of the Human Cytochrome P-450 Enzymes Involved in the N-Demethylation of Azelastine. Drug Metab Dispos. 1999;27(8):942-6.
    連結:
  281. 308. Hyland R, Roe EG, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001;51(3):239-48.
    連結:
  282. 309. Ku HY, Ahn HJ, Seo KA, Kim H, Oh M, Bae SK, et al. The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos. 2008;36(6):986-90.
    連結:
  283. 310. Takahiro R, Nakamura S, Kohno H, Yoshimura N, Nakamura T, Ozawa S, et al. Contribution of CYP3A isoforms to dealkylation of PDE5 inhibitors: a comparison between sildenafil N-demethylation and tadalafil demethylenation. Biol Pharm Bull. 2015;38(1):58-65.
    連結:
  284. 314. Choi MH, Skipper PL, Wishnok JS, Tannenbaum SR. Characterization of testosterone 11 beta-hydroxylation catalyzed by human liver microsomal cytochromes P450. Drug Metab Dispos. 2005;33(6):714-8.
    連結:
  285. 315. Krauser JA, Voehler M, Tseng L-H, Schefer AB, Godejohann M, Guengerich FP. Testosterone 1β-hydroxylation by human cytochrome P450 3A4. Eur J Biochem. 2004;271(19):3962-9.
    連結:
  286. 316. Yamazaki H, Shimada T. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997;346(1):161-9.
    連結:
  287. 317. Tseng E, Walsky RL, Luzietti RA, Harris JJ, Kosa RE, Goosen TC, et al. Relative Contributions of Cytochrome CYP3A4 Versus CYP3A5 for CYP3A-Cleared Drugs Assessed In Vitro Using a CYP3A4-Selective Inactivator (CYP3cide). Drug Metab Dispos. 2014;42(7):1163-73.
    連結:
  288. 318. Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938-44.
    連結:
  289. 319. Wang B, Sanchez RI, Franklin RB, Evans DC, Huskey SE. The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos. 2004;32(11):1209-12.
    連結:
  290. 321. Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol. 2004;67(11):2093-102.
    連結:
  291. 322. Ogura K, Ishikawa Y, Kaku T, Nishiyama T, Ohnuma T, Muro K, et al. Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol. 2006;71(9):1358-69.
    連結:
  292. 323. Nakajima M, Tanaka E, Kobayashi T, Ohashi N, Kume T, Yokoi T. Imipramine N-glucuronidation in human liver microsomes: biphasic kinetics and characterization of UDP-glucuronosyltransferase isoforms. Drug Metab Dispos. 2002;30(6):636-42.
    連結:
  293. 324. Testa B, Kramer SD. The biochemistry of drug metabolism--an introduction: part 4. reactions of conjugation and their enzymes. Chem Biodivers. 2008;5(11):2171-336.
    連結:
  294. 325. Ismail IM, Dear GJ, Roberts AD, Plumb RS, Ayrtont J, Sweatman BC, et al. N-O- glucuronidation: a major human metabolic pathway in the elimination of two novel anti-convulsant drug candidates. Xenobiotica. 2002;32(1):29-43.
    連結:
  295. 327. Kaji H, Kume T. Characterization of afloqualone N-glucuronidation: species differences and identification of human UDP-glucuronosyltransferase isoform(s). Drug Metab Dispos. 2005;33(1):60-7.
    連結:
  296. 328. Zhao HY, Hu H, Wang YT. Comparative metabolism and stability of andrographolide in liver microsomes from humans, dogs and rats using ultra-performance liquid chromatography coupled with triple-quadrupole and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(12):1385-92.
    連結:
  297. 329. Kutsuno Y, Sumida K, Itoh T, Tukey RH, Fujiwara R. Glucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes. Pharmacol Res Perspect. 2013;1(1):e00002.
    連結:
  298. 330. Chen WW, Qin GY, Zhang T, Feng WY. In vitro drug metabolism of green tea catechins in human, monkey, dog, rat and mouse hepatocytes. Drug Metab Lett. 2012;6(2):73-93
    連結:
  299. 331. Obach RS. Pharmacologically active drug metabolites: Impact on drug discovery and pharmacotherapy. Pharmacol Rev. 2013;65(2):578-640.
    連結:
  300. 333. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications: CRC Press; 2007. P 125-7.
    連結:
  301. 334. Sathyan G, Xu E, Thipphawong J, Gupta SK. Pharmacokinetic investigation of dose proportionality with a 24-hour controlled-release formulation of hydromorphone. BMC Clin Pharmacol. 2007;7:3
    連結:
  302. 1. Stevens E. The Modern Drug Discovery Process. Medicinal Chemistry: The Modern Drug Discovery Process. New York: Pearson Education, Inc.; 2014. p. 13-33.
    連結:
  303. 2. Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev. 2007;59(7):546-67.
    連結:
  304. 3. Chatelain E, Ioset JR. Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther. 2011;5:175-81.
    連結:
  305. 5. Anderson DC, Kodukula K. Biomarkers in pharmacology and drug discovery. Biochem Pharmacol. 2014;87(1):172-88.
    連結:
  306. 6. Benjamin A, Nogueira da Costa A, Delaunois A, Rosseels ML, Valentin JP. Renal Safety Pharmacology in Drug Discovery and Development. Handbook of experimental pharmacology. 2015;229:323-52.
    連結:
  307. 7. Fredholm BB, Fleming WW, Vanhoutte PM, Godfraind T. The role of pharmacology in drug discovery. Nat Rev Drug Discov. 2002;1(3):237-8.
    連結:
  308. 8. Huang C, Zheng C, Li Y, Wang Y, Lu A, Yang L. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform. 2014;15(5):710-33.
    連結:
  309. 9. Luo F, Gu J, Chen L, Xu X. Systems pharmacology strategies for anticancer drug discovery based on natural products. Mol Biosyst. 2014;10(7):1912-7.
    連結:
  310. 10. Morimoto BH, Castelloe E, Fox AW. Safety Pharmacology in Drug Discovery and Development. Handbook of experimental pharmacology. 2015;229:65-80.
    連結:
  311. 11. Sorger PK, Schoeberl B. An expanding role for cell biologists in drug discovery and pharmacology. Mol Biol Cell. 2012;23(21):4162-4.
    連結:
  312. 12. Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, et al. Exploratory toxicology as an integrated part of drug discovery. Part II: Screening strategies. Drug Discov Today. 2014;19(8):1137-44.
    連結:
  313. 13. Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, et al. Exploratory toxicology as an integrated part of drug discovery. Part I: Why and how. Drug Discov Today. 2014;19(8):1131-6.
    連結:
  314. 14. Khan SR, Baghdasarian A, Fahlman RP, Michail K, Siraki AG. Current status and future prospects of toxicogenomics in drug discovery. Drug Discov Today. 2014;19(5):562-78.
    連結:
  315. 15. Shi H, Tian S, Li Y, Li D, Yu H, Zhen X, et al. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chem Res Toxicol. 2015; 28(1):116-25.
    連結:
  316. 16. Harrigan GG, Brackett DJ, Boros LG. Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics. Mini Rev Med Chem. 2005;5(1):13-20.
    連結:
  317. 17. Abad-Zapatero C, Champness EJ, Segall MD. Alternative variables in drug discovery: promises and challenges. Future Med Chem. 2014;6(5):577-93.
    連結:
  318. 18. Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest. 2014;124(1):64-9.
    連結:
  319. 19. Chen C, Liu X, Smith BJ. Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokinetics and pharmacodynamics in drug discovery and development. Curr Drug Metab. 2003;4(4):272-91.
    連結:
  320. 20. de Mooij-van Malsen AJ, Pjetri E, Kas MJ. The genetic and epigenetic landscape for CNS drug discovery targeting cross-diagnostic behavioral domains. Eur J Pharmacol. 2015;753:135-9.
    連結:
  321. 21. Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther. 2014;143(3):275-94.
    連結:
  322. 22. Mai A. Targeting epigenetics in drug discovery. ChemMedChem. 2014;9(3):415-7.
    連結:
  323. 23. Yasgar A, Simeonov A. Current approaches for the discovery of drugs that deter substance and drug abuse. Expert Opin Drug Discov. 2014;9(11):1319-31.
    連結:
  324. 24. Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, Martin RJ, Sager H, et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist. 2014;4(3):164-84.
    連結:
  325. 25. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-81.
    連結:
  326. 26. Anania VG, Lill JR. Proteomic tools for the characterization of cell death mechanisms in drug discovery. Proteomics Clin Appl. 2015;9(7-8):671-83.
    連結:
  327. 27. Gokgoz NB, Akbulut BS. Proteomics evidence for the activity of the putative antibacterial plant alkaloid (-)-roemerine: Mainstreaming omics-guided Drug discovery. OMICS. 2015;19(8):478-89.
    連結:
  328. 28. Jung HJ, Kwon HJ. Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharm Res. 2015;38(9):1627-41.
    連結:
  329. 29. Maes M, Nowak G, Caso JR, Leza JC, Song C, Kubera M, et al. Toward omics-based, systems biomedicine, and path and drug discovery methodologies for depression-inflammation research. Mol Neurobiol. 2016;53(5):2927-2935
    連結:
  330. 30. Morris MK, Chi A, Melas IN, Alexopoulos LG. Phosphoproteomics in drug discovery. Drug Discov Today. 2014;19(4):425-32.
    連結:
  331. 31. Zhang HM, Nan ZR, Hui GQ, Liu XH, Sun Y. Application of genomics and proteomics in drug target discovery. Genet Mol Res. 2014;13(1):198-204.
    連結:
  332. 32. Speck-Planche A, Cordeiro MN. Review of current chemoinformatic tools for modeling important aspects of CYPs-mediated drug metabolism. Integrating metabolism data with other biological profiles to enhance drug discovery. Curr Drug Metab. 2014;15(4):429-40.
    連結:
  333. 33. Szlezak N, Evers M, Wang J, Perez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin Pharmacol Ther. 2014;95(5):492-5.
    連結:
  334. 34. Anacker C. Fresh approaches to antidepressant drug discovery. Expert Opin Drug Discov. 2014;9(4):407-21.
    連結:
  335. 35. Chen Q, Luo H, Zhang C, Chen YP. Bioinformatics in protein kinases regulatory network and drug discovery. Math Biosci. 2015;262:147-56.
    連結:
  336. 36. Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, et al. Antibody informatics for drug discovery. Biochim Biophys Acta. 2014;1844(11):2002-15.
    連結:
  337. 37. Wishart DS. Bioinformatics in drug development and assessment. Drug Metab Rev. 2005;37(2):279-310.
    連結:
  338. 38. Zhang T, Wei D. Recent progress on structural bioinformatics research of cytochrome P450 and its impact on drug discovery. Adv Exp Med Biol. 2015;827:327-39.
    連結:
  339. 39. Ambre PK, Wavhale RD, Coutinho EC. New horizons in antimalarial drug discovery in the last decade by chemoinformatic approaches. Comb Chem High Throughput Screen. 2015;18(2):129-50.
    連結:
  340. 40. Ekins S, Lage de Siqueira-Neto J, McCall LI, Sarker M, Yadav M, Ponder EL, et al. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Negl Trop Dis. 2015;9(6):e0003878. doi: 10.1371/journal.pntd.0003878..
    連結:
  341. 41. Karthikeyan M, Vyas R. Role of open source tools and resources in virtual screening for drug discovery. Comb Chem High Throughput Screen. 2015;18(6):528-43.
    連結:
  342. 42. Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, et al. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep. 2014;31(11):1585-611.
    連結:
  343. 43. Medina-Franco JL, Mendez-Lucio O, Martinez-Mayorga K. The interplay between molecular modeling and chemoinformatics to characterize protein-ligand and protein-protein interactions landscapes for drug discovery. Adv Protein Chem Struct Biol. 2014;96:1-37.
    連結:
  344. 44. Toropov AA, Toropova AP. Editorial: From chemoinformatics to nanoinformatics: New tools for drug discovery and nanoparticles design in medicinal chemistry. Curr Top Med Chem. 2015;15(18):1767.
    連結:
  345. 46. Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15(19):2184-94.
    連結:
  346. 47. Kell DB, Goodacre R. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today. 2014;19(2):171-82.
    連結:
  347. 48. Leenders J, Frederich M, de Tullio P. Nuclear magnetic resonance: a key metabolomics platform in the drug discovery process. Drug Discov Today Technol. 2015;13:39-46.
    連結:
  348. 49. Mastrangelo A, Armitage EG, Garcia A, Barbas C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem. 2014;14(23):2627-36.
    連結:
  349. 50. Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal. 2015;107:63-74.
    連結:
  350. 51. Powers R. The current state of drug discovery and a potential role for NMR metabolomics. J Med Chem. 2014;57(14):5860-70.
    連結:
  351. 52. Vincent IM, Barrett MP. Metabolomic-based strategies for anti-parasite drug discovery. J Biomol Screen. 2015;20(1):44-55.
    連結:
  352. 53. Brana MF, Sanchez-Migallon A. Anticancer drug discovery and pharmaceutical chemistry: a history. Clin Transl Oncol. 2006;8(10):717-28.
    連結:
  353. 54. Colombo M, Peretto I. Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov Today. 2008;13(15-16):677-84.
    連結:
  354. 55. Jansen DJ, Shenvi RA. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med Chem. 2014;6(10):1127-48.
    連結:
  355. 56. Kumar BV, Sriram D, Yogeeswari P. Editorial: recent trends in library design and virtual screening in medicinal chemistry and drug discovery. Curr Top Med Chem. 2014;14(16):1865.
    連結:
  356. 57. Lindsley CW. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: drug discovery targeting allosteric sites. J Med Chem. 2014;57(18):7485-98.
    連結:
  357. 58. MacCoss M, Baillie TA. Organic chemistry in drug discovery. Science. 2004;303(5665):1810-3.
    連結:
  358. 59. Potoski J. Timely synthetic support for medicinal chemists. Drug Discov Today. 2005;10(2):115-20.
    連結:
  359. 60. Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl. 2014;53(34):8840-69.
    連結:
  360. 61. Ruiz-Garcia A, Bermejo M, Moss A, Casabo VG. Pharmacokinetics in drug discovery. J Pharm Sci. 2008;97(2):654-90.
    連結:
  361. 62. Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev. 1997;49(4):403-49.
    連結:
  362. 63. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neuro Rx. 2005;2(4):554-71.
    連結:
  363. 65. Jang GR, Harris RZ, Lau DT. Pharmacokinetics and its role in small molecule drug discovery research. Med Res Rev. 2001;21(5):382-96.
    連結:
  364. 66. Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49(Suppl 5):S13-21.
    連結:
  365. 68. Ashtari S, Pourhoseingholi MA, A. S, MR. Z. Hepatocellular carcinoma in Asia: Prevention strategy and planning. World J Hepatol. 2015;7(12):1708-17.
    連結:
  366. 69. Venook AP, Papandreou C, Furuse J, Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist. 2010;15(Suppl 4):5-13.
    連結:
  367. 70. Gomaa AI, I. W. Recent advances in multidisciplinary management of hepatocellular carcinoma. World journal of hepatology. 2015;7(4):673-87.
    連結:
  368. 71. Nordenstedta H, Whiteb DL, El-Serag HB. The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):206-14.
    連結:
  369. 72. Liang X, Yang L, Qin AR, Ly J, Liederer BM, Messick K, et al. Measuring NAD(+) levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis. 2014;6(11):1445-57.
    連結:
  370. 73. Kim DY, Han KH. Epidemiology and surveillance of hepatocellular carcinoma. Liver cancer. 2012;1(1):2-14.
    連結:
  371. 74. Jemal A, Bray F, Center MM, Jacques F, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.
    連結:
  372. 75. de Martel C, Maucort-Boulch D, Plummer M, Franceschi S. Worldwide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma. Hepatology. 2015;62(4):1190-200.
    連結:
  373. 76. Tarocchi M, Polvani S, Marroncini G, Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J Gastroenterol. 2014;20(33):11630-40.
    連結:
  374. 77. Aspinall EJ, Hawkins G, Fraser A, Hutchinson SJ, Goldberg D. Hepatitis B prevention, diagnosis, treatment and care: a review. Occup Med (Lond). 2011;61(8):531-40.
    連結:
  375. 78. Lin CL, Kao JH. Perspectives and control of hepatitis B virus infection in Taiwan. J Formos Med Assoc. 2015;114(10):901-9.
    連結:
  376. 79. Su WW, Chen CH, Lin HH, Yang SS, Chang TT, Cheng KS, et al. Geographic variations of predominantly hepatitis C virus associated male hepatocellular carcinoma townships in Taiwan: identification of potential high HCV endemic areas. Hepatol Int. 2009;3(4):537-43.
    連結:
  377. 80. Chen CJ, Yang HI. Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol. 2011;26(4):628-38.
    連結:
  378. 81. Grimm D, Thimme R, Blum HE. HBV life cycle and novel drug targets. Hepatol Int. 2011;5(2):644-53.
    連結:
  379. 82. Deny P, Zoulim F. Hepatitis B virus: from diagnosis to treatment. Pathol Biol (Paris). 2010;58(4):245-53.
    連結:
  380. 83. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480:672-86.
    連結:
  381. 84. You CR, Lee SW, Jang JW, Yoon SK. Update on hepatitis B virus infection. World J Gastroenterol. 2014;20(37):13293-305.
    連結:
  382. 85. Shi YH, Shi CH. Molecular characteristics and stages of chronic hepatitis B virus infection. World J Gastroenterol. 2009;15(25):3099-105.
    連結:
  383. 86. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris). 2010;58(4):258-66.
    連結:
  384. 87. Urban S, Schulze A, Dandri M, Petersen J. The replication cycle of hepatitis B virus. J Hepatol. 2010;52(2):282-4.
    連結:
  385. 88. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3):581-92.
    連結:
  386. 89. Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61(Suppl 1):i6-17.
    連結:
  387. 90. Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol. 2007;13(1):48-64.
    連結:
  388. 91. Inan N, F. T. Hepatitis B virus: Biology and life cycle. J Viral Hepat. 2015;21(1):1-7.
    連結:
  389. 92. Gao S, Duan ZP, Coffin CS. Clinical relevance of hepatitis B virus variants. World J Hepatol. 2015;7(8):1086-96.
    連結:
  390. 93. Zeisel MB, Lupberger J, Fofana I, Baumert TF. Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol. 2013;58(2):375-84.
    連結:
  391. 95. Chen J, Yuan Z. Interplay between hepatitis B virus and the innate immune responses: implications for new therapeutic strategies. Virol Sin. 2014;29(1):17-24.
    連結:
  392. 96. Durantel D, Zoulim F. Interplay between hepatitis B virus and TLR2-mediated innate immune responses: can restoration of TLR2 functions be a new therapeutic option? J Hepatol. 2012;57(3):486-9.
    連結:
  393. 97. Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy? Virus Res. 2003;92(2):131-40.
    連結:
  394. 98. Lok AS. Personalized treatment of hepatitis B. Clin Mol Hepatol. 2015;21(1):1-6.
    連結:
  395. 99. Perrillo RP. Current treatment of chronic hepatitis B: benefits and limitations. Semin Liver Dis. 2005;25(Suppl 1):20-8.
    連結:
  396. 100. Yuen MF, Lai CL. Treatment of chronic hepatitis B: Evolution over two decades. J Gastroenterol Hepatol. 2011;26(Suppl 1):138-43.
    連結:
  397. 101. Delaney WEt. Molecular virology of chronic hepatitis B and C: parallels, contrasts and impact on drug development and treatment outcome. Antiviral Res. 2013;99(1):34-48.
    連結:
  398. 102. Fletcher SP, Delaney WEt. New therapeutic targets and drugs for the treatment of chronic hepatitis B. Semin Liver Dis. 2013;33(2):130-7.
    連結:
  399. 103. Ghany M, Liang TJ. Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B. Gastroenterology. 2007;132(4):1574-85.
    連結:
  400. 104. Hynicka LM, Yunker N, Patel PH. A review of oral antiretroviral therapy for the treatment of chronic hepatitis B. Ann Pharmacother. 2010;44(7-8):1271-86.
    連結:
  401. 105. Li H, Zhu W, Zhang L, Lei H, Wu X, Guo L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep. 2015;5:8421.
    連結:
  402. 106. Stein LL, Loomba R. Drug targets in hepatitis B virus infection. Infect Disord Drug Targets. 2009;9(2):105-16.
    連結:
  403. 107. Wang XY, Chen HS. Emerging antivirals for the treatment of hepatitis B. World J Gastroenterol. 2014;20(24):7707-17.
    連結:
  404. 108. Zoulim F, Locarnini S. Optimal management of chronic hepatitis B patients with treatment failure and antiviral drug resistance. Liver Int. 2013;33(Suppl 1):116-24.
    連結:
  405. 110. Khungar V, Han SH. A systematic review of side effects of nucleoside and nucleotide drugs used for treatment of chronic hepatitis B. Curr Hepat Rep. 2010;9(2):75-90.
    連結:
  406. 111. Sun P, Yang X, He RQ, Hu QG, Song ZF, Xiong J, et al. Antiviral therapy after curative treatment of hepatitis B/C virus-related hepatocellular carcinoma: A systematic review of randomized trials. Hepatol Res. 2014;44(3):259-69.
    連結:
  407. 112. Xia BW, Zhang YC, Wang J, Ding FH, He XD. Efficacy of antiviral therapy with nucleotide/nucleoside analogs after curative treatment for patients with hepatitis B virus-related hepatocellular carcinoma: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2015;39(4):458-68.
    連結:
  408. 113. Zhao SS, Tang LH, Dai XH, Wang W, Zhou RR, Chen LZ, et al. Comparison of the efficacy of tenofovir and adefovir in the treatment of chronic hepatitis B: a systematic review. Virol J. 2011;8:111.
    連結:
  409. 114. Lee HW, Chang HY, Yang SY, Kim HJ. Viral evolutionary changes during tenofovir treatment in a chronic hepatitis B patient with sequential nucleos(t)ide therapy. J Clin Virol. 2014;60(3):313-6.
    連結:
  410. 115. Fung J, Lai CL, Seto WK, Yuen MF. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. J Antimicrob Chemother. 2011;66(12):2715-25.
    連結:
  411. 116. Menendez-Arias L, Alvarez M, Pacheco B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Curr Opin Virol. 2014;8:1-9.
    連結:
  412. 117. Mukaide M, Tanaka Y, Shin IT, Yuen MF, Kurbanov F, Yokosuka O, et al. Mechanism of entecavir resistance of hepatitis B virus with viral breakthrough as determined by long-term clinical assessment and molecular docking simulation. Antimicrob Agents Chemother. 2010;54(2):882-9.
    連結:
  413. 118. Chang J, Guo F, Zhao X, Guo J-T. Therapeutic strategies for a functional cure of chronic hepatitis B virus infection. Acta Pharm Sin B. 2014;4(4):248-57.
    連結:
  414. 119. Bertoletti A, Rivino L. Hepatitis B: future curative strategies. Curr Opin Infect Dis. 2014;27(6):528-34.
    連結:
  415. 120. Guo H, Zhou T, Jiang D, Cuconati A, Xiao GH, Block TM, et al. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway. J Virol. 2007;81(18):10072-80.
    連結:
  416. 121. Rawat S, Bouchard MJ. The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol. 2015;89(2):999-1012.
    連結:
  417. 122. Robek MD, Boyd BS, Wieland SF, Chisari FV. Signal transduction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci USA. 2004;101(6):1743-7.
    連結:
  418. 123. Jiang J, Tang H. Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein cell. 2010;1(12):1106-17.
    連結:
  419. 124. Liu D, Wu A, Cui L, Hao R, Wang Y, He J, et al. Hepatitis B virus polymerase suppresses NF-kappaB signaling by inhibiting the activity of IKKs via interaction with Hsp90beta. PLoS One. 2014;9(3):e91658.
    連結:
  420. 125. Huang TJ, Chou BH, Lin CW, Weng JH, Chou CH, Yang LM, et al. Synthesis and antiviral effects of isosteviol-derived analogues against the hepatitis B virus. Phytochemistry. 2014;99:107-14.
    連結:
  421. 126. Vestergaard B, Agerso H, Lykkesfeldt J. Nephrectomized and hepatectomized animal models as tools in preclinical pharmacokinetics. Basic Clin Pharmacol Toxicol. 2013;113(2):75-86.
    連結:
  422. 127. Chen J, Li W, Yao H, Xu J. Insights into drug discovery from natural products through structural modification. Fitoterapia. 2015;103:231-41.
    連結:
  423. 128. Lahlou M. The Success of Natural Products in Drug Discovery. Pharmacol Pharm. 2013;4:17-31.
    連結:
  424. 129. De Marco Almeida F, de Castro Pimenta AM, Oliveira MC, De Lima ME. Venoms, toxins and derivatives from the Brazilian fauna: valuable sources for drug discovery. Sheng Li Xue Bao. 2015;67(3):261-70.
    連結:
  425. 130. Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193-200.
    連結:
  426. 131. Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF. Spider venomics: implications for drug discovery. Future Med Chem. 2014;6(15):1699-714.
    連結:
  427. 132. Shih SP, Lee MG, El-Shazly M, Juan YS, Wen ZH, Du YC, et al. Tackling the cytotoxic effect of a marine polycyclic Quinone-type metabolite: Halenaquinone induces Molt 4 cells apoptosis via oxidative stress combined with the inhibition of HDAC and topoisomerase activities. Mar Drugs. 2015;13(5):3132-53.
    連結:
  428. 133. Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 2012;19(1):85-98.
    連結:
  429. 134. Leal MC, Puga J, Serodio J, Gomes NC, Calado R. Trends in the discovery of new marine natural products from invertebrates over the last two decades--where and what are we bioprospecting? PLoS one. 2012;7(1):e30580.
    連結:
  430. 135. Zulkipli IN, David SR, Rajabalaya R, Idris A. Medicinal Plants: A Potential Source of Compounds for Targeting Cell Division. Drug Target Insights. 2015;9:9-19.
    連結:
  431. 136. Oniyangi O, Cohall DH. Phytomedicines (medicines derived from plants) for sickle cell disease. Cochrane Database Syst Rev. 2015;4:CD004448.
    連結:
  432. 137. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging. Boschstr. 12, 69469 Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA,; 2015.
    連結:
  433. 138. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144.
    連結:
  434. 139. Miller LH, Su X. Artemisinin: discovery from the Chinese herbal garden. Cell. 2011;146(6):855-8.
    連結:
  435. 140. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-36.
    連結:
  436. 141. Bauer A, Bronstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014;31(1):35-60.
    連結:
  437. 142. Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery. Org Biomol Chem. 2015;13(23):6432-48.
    連結:
  438. 143. Szychowski J, Truchon JF, Bennani YL. Natural products in medicine: transformational outcome of synthetic chemistry. J Med Chem. 2014;57(22):9292-308.
    連結:
  439. 144. Akihisa T, Hamasaki Y, Tokuda H, Ukiya M, Kimura Y, Nishino H. Microbial transformation of isosteviol and inhibitory effects on Epstein-Barr virus activation of the transformation products. J Nat Prod. 2004;67(3):407-10.
    連結:
  440. 145. Chou BH, Yang LM, Chang SF, Hsu FL, Lo CH, Liaw JH, et al. Microbial transformation of isosteviol lactone and evaluation of the transformation products on androgen response element. J Nat Prod. 2008;71(4):602-7.
    連結:
  441. 146. Chang SF, Chou BH, Yang LM, Hsu FL, Lin WK, Ho Y, et al. Microbial transformation of isosteviol oxime and the inhibitory effects on NF-kappaB and AP-1 activation in LPS-stimulated macrophages. Bioorg Med Chem. 2009;17(17):6348-53.
    連結:
  442. 147. Chou BH, Yang LM, Chang SF, Hsu FL, Wang LH, Lin WK, et al. Transformation of isosteviol lactam by fungi and the suppressive effects of its transformed products on LPS-induced iNOS expression in macrophages. J Nat Prod. 2011;74(6):1379-85.
    連結:
  443. 148. Chang SF, Yang LM, Huang TJ, Chen CY, Sheu SY, Liu PC, et al. Biotransformation of dihydroisosteviol and the effects of transformed products on steroidogenic gene expressions. Phytochemistry. 2013;95:268-76.
    連結:
  444. 149. Wu Y, Yang JH, Dai GF, Liu CJ, Tian GQ, Ma WY, et al. Stereoselective synthesis of bioactive isosteviol derivatives as alpha-glucosidase inhibitors. Bioorg Med Chem. 2009;17(4):1464-73.
    連結:
  445. 150. Lin LH, Lee LW, Sheu SY, Lin PY. Study on the stevioside analogues of steviolbioside, steviol, and isosteviol 19-alkyl amide dimers: synthesis and cytotoxic and antibacterial activity. Chem Pharm Bull. 2004;52(9):1117-22.
    連結:
  446. 151. Wu Y, Dai GF, Yang JH, Zhang YX, Zhu Y, Tao JC. Stereoselective synthesis of 15- and 16-substituted isosteviol derivatives and their cytotoxic activities. Bioorg Med Chem Lett. 2009;19(6):1818-21.
    連結:
  447. 152. Zhang T, Lu LH, Liu H, Wang JW, Wang RX, Zhang YX, et al. D-ring modified novel isosteviol derivatives: design, synthesis and cytotoxic activity evaluation. Bioorg Med Chem Lett. 2012;22(18):5827-32.
    連結:
  448. 153. Ukiya M, Sawada S, Kikuchi T, Kushi Y, Fukatsu M, Akihisa T. Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against human cancer cell lines. Chem Biodivers. 2013;10(2):177-88.
    連結:
  449. 154. Zhu SL, Wu Y, Liu CJ, Wei CY, Tao JC, Liu HM. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg Med Chem Lett. 2013;23(5):1343-6.
    連結:
  450. 155. Wang TT, Liu Y, Chen L. Synthesis and cytotoxic activity of nitric oxide-releasing isosteviol derivatives. Bioorg Med Chem Lett. 2014;24(9):2202-5.
    連結:
  451. 156. Ogawa T, Nozaki M, Matsui M. Tota lsynthesis of stevioside. Tetrahedron. 1980;36(18):2641-8.
    連結:
  452. 157. Geuns JMC. Molecules of Interest. Stevioside. Phytochemistry. 2003;64:913-21.
    連結:
  453. 158. Stevia: The genus stevia: CRS press; 2001. P. 55-7.
    連結:
  454. 159. Brahmachari G, Mandal LC, Roy R, Mondal S, Brahmachari AK. Stevioside and related compounds - molecules of pharmaceutical promise: a critical overview. Archiv der Pharmazie. 2011;344(1):5-19.
    連結:
  455. 161. Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol. 2008;51(1):37-41.
    連結:
  456. 164. Boonkaewwan C, Ao M, Toskulkao C, Rao MC. Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. J Agric Food Chem. 2008;56(10):3777-84.
    連結:
  457. 165. Chatsudthipong V, Jutabha P. Effect of steviol on para-aminohippurate transport by isolated perfused rabbit renal proximal tubule. J Pharmacol Exp Ther. 2001;298(3):1120-7.
    連結:
  458. 166. Toskulkao C, Sutheerawattananon M, Piyachaturawat P. Inhibitory effect of steviol, a metabolite of stevioside, on glucose absorption in everted hamster intestine in vitro. Toxicol Lett. 1995;80(1-3):153-9.
    連結:
  459. 167. Melis MS, Rocha ST, Augusto A. Steviol effect, a glycoside of Stevia rebaudiana, on glucose clearances in rats. Braz J Biol. 2009;69(2):371-4.
    連結:
  460. 168. Terai T, Ren H, Mori G, Yamaguchi Y, Hayashi T. Mutagenicity of steviol and its oxidative derivatives in Salmonella typhimurium TM677. Chem Pharm Bull. 2002;50(7):1007-10.
    連結:
  461. 169. Matsui M, Matsui K, Kawasaki Y, Oda Y, Noguchi T, Kitagawa Y, et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis. 1996;11(6):573-9.
    連結:
  462. 170. Brusick DJ. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem Toxicol. 2008;46(Suppl 7):S83-91.
    連結:
  463. 171. Geuns JM, Bruggeman V, Buyse JG. Effect of stevioside and steviol on the developing broiler embryos. J Agric Food Chem. 2003;51(17):5162-7.
    連結:
  464. 172. Matsui M, Sofuni T, Nohmi T. Regionally-targeted mutagenesis by metabolically-activated steviol: DNA sequence analysis of steviol-induced mutants of guanine phosphoribosyltransferase (gpt) gene of Salmonella typhimurium TM677. Mutagenesis. 1996;11(6):565-72.
    連結:
  465. 175. Avent AG, Hanson JR, de Oliveira BH. Hydrolysis of the diterpenoid glycoside, stevioside. Phytochemistry. 1990;29(8):2712-5.
    連結:
  466. 176. Takasaki M, Konoshima T, Kozuka M, Tokuda H, Takayasu J, Nishino H, et al. Cancer preventive agents. Part 8: Chemopreventive effects of stevioside and related compounds. Bioorg Med Chem. 2009;17(2):600-5.
    連結:
  467. 177. Xu D, Du W, Zhao L, Davey AK, Wang J. The neuroprotective effects of isosteviol against focal cerebral ischemia injury induced by middle cerebral artery occlusion in rats. Planta Med. 2008;74(8):816-21.
    連結:
  468. 178. Wong KL, Lin JW, Liu JC, Yang HY, Kao PF, Chen CH, et al. Antiproliferative effect of isosteviol on angiotensin-II-treated rat aortic smooth muscle cells. Pharmacology. 2006;76(4):163-9.
    連結:
  469. 179. Mizushina Y, Akihisa T, Ukiya M, Hamasaki Y, Murakami-Nakai C, Kuriyama I, et al. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005;77(17):2127-40.
    連結:
  470. 180. Yamamoto NS, Kelmer Bracht AM, Ishii EL, Kemmelmeier FS, Alvarez M, Bracht A. Effect of steviol and its structural analogues on glucose production and oxygen uptake in rat renal tubules. Experientia. 1985;41(1):55-7.
    連結:
  471. 181. Chen X, Hermansen K, Jeppesen PB. Impact of glucagon-like peptide-1 (7-36) amide, isosteviol and 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside on leucine-mediated alpha-cell dysfunction. Diabetes Obes Metab. 2012;14(11):1020-31.
    連結:
  472. 182. Chen X, Hermansen K, Xiao J, Bystrup SK, O'Driscoll L, Jeppesen PB. Isosteviol has beneficial effects on palmitate-induced alpha-cell dysfunction and gene expression. PLoS One. 2012;7(3):e34361.
    連結:
  473. 183. Nordentoft I, Jeppesen PB, Hong J, Abudula R, Hermansen K. Isosteviol increases insulin sensitivity and changes gene expression of key insulin regulatory genes and transcription factors in islets of the diabetic KKAy mouse. Diabetes Obes Metab. 2008;10(10):939-49.
    連結:
  474. 184. Xu D, Xu M, Lin L, Rao S, Wang J, Davey AK. The effect of isosteviol on hyperglycemia and dyslipidemia induced by lipotoxicity in rats fed with high-fat emulsion. Life Sci. 2012;90(1-2):30-8.
    連結:
  475. 185. Xu D, Zhang S, Foster DJ, Wang J. The effects of isosteviol against myocardium injury induced by ischaemia-reperfusion in the isolated guinea pig heart. Clin Exp Pharmacol Physiol. 2007;34(5-6):488-93.
    連結:
  476. 186. Xu D, Li Y, Wang J, Davey AK, Zhang S, Evans AM. The cardioprotective effect of isosteviol on rats with heart ischemia-reperfusion injury. Life Sci. 2007;80(4):269-74.
    連結:
  477. 187. Liu JC, Kao PF, Hsieh MH, Chen YJ, P. C. The antihypertensive effect of stevioside derivative isosteviol in spontaneously hypertensive rats. Acta Cardiol Sin. 2001;17:133-40.
    連結:
  478. 188. Wong KL, Chan P, Yang HY, Hsu FL, Liu IM, Cheng YW, et al. Isosteviol acts on potassium channels to relax isolated aortic strips of Wistar rat. Life Sci. 2004;74(19):2379-87.
    連結:
  479. 189. Wong KL, Yang HY, Chan P, Cheng TH, Liu JC, Hsu FL, et al. Isosteviol as a potassium channel opener to lower intracellular calcium concentrations in cultured aortic smooth muscle cells. Planta Med. 2004;70(2):108-12.
    連結:
  480. 190. Kataev VE, Strobykina I, Andreeva OV, Garifullin BF, Sharipova RR, Mironov VF, et al. [Synthesis and antituberculosis activity of the derivatives of glycoside steviolbioside from the plant Stevia rebaudiana and diterpenoid isosteviol containing hydrazone, hydrazide and pyridinoyl moieties]. Bioorg Khim. 2011;37(4):542-51.
    連結:
  481. 191. Zhang T, Lu LH, Liu H, Wang JW, Wang RX, Zhang YX, et al. D-ring modified novel isosteviol derivatives: Design, synthesis and cytotoxic activity evaluation. Bioorg Med Chem Lett. 2012;22(18):5827-32..
    連結:
  482. 192. Lin CL, Lin SJ, Huang WJ, Ku YL, Tsai TH, Hsu FL. Novel ent-Beyeran-19-oic acids from biotransformations of isosteviol metabolites by Mortierella isabellina. Planta Med. 2007;73(15):1581-7.
    連結:
  483. 193. Chang SF, Yang LM, Lo CH, Liaw JH, Wang LH, Lin SJ. Microbial transformation of isosteviol and bioactivities against the glucocorticoid/androgen response elements. J Nat Prod. 2008;71(1):87-92.
    連結:
  484. 194. Hsu FL, Hou CC, Yang LM, Cheng JT, Chi TC, Liu PC, et al. Microbial transformations of isosteviol. J Nat Prod. 2002;65(3):273-7.
    連結:
  485. 195. Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, et al. Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett. 2003;13(20):3549-52.
    連結:
  486. 196. Flekhter OB, Boreko EI, Nigmatullina LR, Tret'yakova EV, Pavlova NI, Baltina LA, et al. Synthesis and antiviral activity of ureides and carbamates of betulinic acid and its derivatives. Russ J Bioorganic Chem. 2003;29(6):594-600.
    連結:
  487. 197. Huang TJ, Yang CL, Kuo YC, Chang YC, Yang LM, Chou BH, et al. Synthesis and anti-hepatitis B virus activity of C4 amide-substituted isosteviol derivatives. Bioorg Med Chem. 2015;23(4):720-8.
    連結:
  488. 198. Li X, Zhong X, Chen ZH, Xing YF, Wu DH, Chen J, et al. Hepatitis B virus DNA negativity acts as a favorable prognostic factor in hepatocellular carcinoma patients. Asian Pac J Cancer Prev. 2014;15(22):9635-41.
    連結:
  489. 199. Liu WR, Tian MX, Jin L, Yang LX, Ding ZB, Shen YH, et al. High levels of hepatitis B surface antigen are associated with poorer survival and early recurrence of hepatocellular carcinoma in patients with low hepatitis B viral loads. Ann Surg Oncol. 2015;22(3):843-50.
    連結:
  490. 200. Hung CM, Huang WC, Pan HL, Chien PH, Lin CW, Chen LC, et al. Hepatitis B virus X upregulates HuR protein level to stabilize HER2 expression in hepatocellular carcinoma cells. Biomed Res Int. 2014;2014:827415.
    連結:
  491. 201. Xu C, Zhou W, Wang Y, Qiao L. Hepatitis B virus-induced hepatocellular carcinoma. Cancer Lett. 2014;345(2):216-22.
    連結:
  492. 202. Chen TM, Chang CC, Huang PT, Wen CF, Lin CC. Performance of risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B) score in classifying treatment eligibility under 2012 Asian Pacific Association for the Study of the Liver (APASL) guideline for chronic hepatitis B patients. Aliment Pharmacol Ther. 2013;37(2):243-51.
    連結:
  493. 205. Revelsky IA, Chernetsova ES, Luzyanin BP, Fedoseeva MV, Glazkov IN, Revelsky AI. Organic elemental analysis: a new universal approach to authenticity/quality control of pharmaceuticals. Drug Test Anal. 2010;2(9):452-4.
    連結:
  494. 206. Smith BR, Eastman CM, Njardarson JT. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J Med Chem. 2014;57(23):9764-73.
    連結:
  495. 208. Brodniewicz T, Grynkiewicz G. Preclinical drug development. Acta Pol Pharm. 2010;67(6):578-85.
    連結:
  496. 209. Robinson R, Stokes R. Electrolyte solutions. Butterworths, London; 1959.
    連結:
  497. 210. Aiken AC, DeCarlo PF, Jimenez JL. Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Anal Chem. 2007;79(21):8350-8.
    連結:
  498. 211. Takeda K, Ichijo N, Noda Y, Takegoshi K. Elemental analysis by NMR. J Magn Reson. 2012;224:48-52.
    連結:
  499. 212. Trejos T, Koons R, Becker S, Berman T, Buscaglia J, Duecking M, et al. Cross-validation and evaluation of the performance of methods for the elemental analysis of forensic glass by mu-XRF, ICP-MS, and LA-ICP-MS. Anal Bioanal Chem. 2013;405(16):5393-409.
    連結:
  500. 214. Li P, Zhao L. Developing early formulations: practice and perspective. Int J Pharm. 2007;341(1-2):1-19.
    連結:
  501. 215. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.
    連結:
  502. 216. Saal C, Petereit AC. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks. Eur J Pharm Sci. 2012;47(3):589-95.
    連結:
  503. 217. Perlovich GL. Thermodynamic approaches to the challenges of solubility in drug discovery and development. Mol Pharm. 2014;11(1):1-11.
    連結:
  504. 218. Bharate SS, Vishwakarma RA. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery. Bioorg Med Chem Lett. 2015;25(7):1561-7.
    連結:
  505. 220. Kerns EH, Di L, Carter GT. In vitro solubility assays in drug discovery. Curr Drug Metab. 2008;9(9):879-85.
    連結:
  506. 221. Kreye O, Hatice Mutlu H, Meier MAR. Sustainable routes to polyurethane precursors. Green Chem. 2013(15 ):1431-55
    連結:
  507. 223. Polyethylene glycol [MAK Value documentation, 1998]. The MAK-Collection for occupational health and safety: Wiley-VCH Verlag GmbH & Co. KGaA; 2002.
    連結:
  508. 224. Prentice DE, Majeed SK. Oral toxicity of polyethylene glycol (PEG 200) in monkeys and rats. Toxicol Lett. 1978;2(2):119-22.
    連結:
  509. 225. Rebecca SL. Final report on the safety sssessment of polyethylene glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M. Int J Toxicol. 1993;12(5):429-57.
    連結:
  510. 226. Koh HL, Yau WP, Ong PS, Hegde A. Current trends in modern pharmaceutical analysis for drug discovery. Drug Discov Today. 2003;8(19):889-97.
    連結:
  511. 227. Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arab J Chem. 2017;10: S1409–21.
    連結:
  512. 229. Jin H, Gerber JP, Wang J, Ji M, Davey AK. Oral and i.v. pharmacokinetics of isosteviol in rats as assessed by a new sensitive LC-MS/MS method. J Pharm Biomed Anal. 2008;48(3):986-90.
    連結:
  513. 230. Bashaw ED, DeSilva B, Rose MJ, Wang YM, Shukla C. Bioanalytical method validation: concepts, expectations and challenges in small molecule and macromolecule--a report of PITTCON 2013 symposium. AAPS J. 2014;16(3):586-91.
    連結:
  514. 231. James CA, Breda M, Frigerio E. Bioanalytical method validation: a risk-based approach? J Pharm Biomed Anal. 2004;35(4):887-93.
    連結:
  515. 232. Tiwari G, Tiwari R. Bioanalytical method validation: An updated review. Pharm Methods. 2010;1(1):25-38.
    連結:
  516. 233. Zhou M. Fundamental elements and structures for regulated bioanalytical laboratories. Regulated bioanalytical laboratories: John Wiley & Sons, Inc.; 2011. p. 131-66.
    連結:
  517. 234. Swartz M. HPLC Detectors: A brief review. J Liq Chromatogr. 2010;33(9-12):1130-50.
    連結:
  518. 235. Crotti S, Posocco B, Marangon E, Nitti D, Toffoli G, Agostini M. Mass spectrometry in the pharmacokinetic studies of anticancer natural products. Mass Spectrom Rev. 2015.
    連結:
  519. 236. Feng WY. Mass spectrometry in drug discovery: a current review. Curr Drug Discov Technol. 2004;1(4):295-312.
    連結:
  520. 237. Michnowicz J. Mass spectrometry in drug discovery and development. Nat Rev Drug Discov. 2002;1(8):651.
    連結:
  521. 238. Wingfield J, Wilson ID. Advances in mass spectrometry within drug discovery. J Biomol Screen. 2016;21(2):109-10.
    連結:
  522. 240. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217(25):3929-37.
    連結:
  523. 241. Studzińska S, Buszewski B. Effect of mobile phase pH on the retention of nucleotides on different stationary phases for high-performance liquid chromatography. Anal Bioanal Chem. 2013;405(5):1663-72.
    連結:
  524. 243. Bylda C, Thiele R, Kobold U, Volmer DA. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst. 2014;139(10):2265-76.
    連結:
  525. 244. Kole PL, Venkatesh G, Kotecha J, Sheshala R. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr. 2011;25(1-2):199-217.
    連結:
  526. 246. EMA. Guideline on bioanalytical method validation; 2012. p. 1-22.
    連結:
  527. 248. Abay ET, van der Westhuizen JH, Swart KJ, Gibhard L, Tukulula M, Chibale K, et al. The development and validation of an LC-MS/MS method for the determination of a new anti-malarial compound (TK900D) in human whole blood and its application to pharmacokinetic studies in mice. Malar J. 2014;13:42.
    連結:
  528. 249. Krull IS, Swartz M. Analytical method development and validation for the academic researcher. Anal Lett. 1999;32(6):1067-80.
    連結:
  529. 250. Kosjek T, Heath E, Perez S, Petrovic M, Barcelo D. Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole - time-of-flight mass spectrometry. J Hydrol. 2009;372(1-4):109-17.
    連結:
  530. 251. Cui Y, Li Q, Zhang M, Liu Z, Yin W, Liu W, et al. LC-MS determination and pharmacokinetics of p-coumaric acid in rat plasma after oral administration of p-coumaric acid and freeze-dried red wine. J Agric Food Chem. 2010;58(23):12083-8.
    連結:
  531. 252. Liu YQ, He GH, Li HL, He JC, Feng EF, Bai L, et al. Plasma pharmacokinetics and tissue distribution study of roemerine in rats by liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci. 2014;969:249-55.
    連結:
  532. 254. Geuns JM, Buyse J, Vankeirsbilck A, Temme EH, Compernolle F, Toppet S. Identification of steviol glucuronide in human urine. J Agric Food Chem. 2006;54(7):2794-8.
    連結:
  533. 255. Roberts A, Renwick AG. Comparative toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol in rats. Food Chem Toxicol. 2008;46(Suppl 7):S31-9.
    連結:
  534. 283. Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch Biochem Biophys. 2014;544:2-17.
    連結:
  535. 284. Caira MR, Ionescu C. Drug metabolism: current concepts: Springer Science & Business Media; 2006.
    連結:
  536. 286. Hosey CM, Chan R, Benet LZ. BDDCS predictions, self-correcting aspects of BDDCS assignments, BDDCS assignment corrections, and classification for more than 175 additional drugs. AAPS J. 2016;18(1):251-60.
    連結:
  537. 287. Benet LZ. Predicting drug disposition via application of a Biopharmaceutics Drug Disposition Classification System. Basic Clin Pharmacol Toxicol. 2010;106(3):162-7.
    連結:
  538. 288. Liu X, Jia L. The conduct of drug metabolism studies considered good practice (I): Analytical systems and in vivo studies. Curr Drug Metab. 2007;8(8):815-21.
    連結:
  539. 289. Levsen K, Schiebel H-M, Behnke B, Dötzer R, Dreher W, Elend M, et al. Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview. J Chromatogr A. 2005;1067(1–2):55-72.
    連結:
  540. 290. Liu J, Zhao Z, Teffera Y. Application of on-line nano-liquid chromatography/mass spectrometry in metabolite identification studies. Rapid Commun Mass Spectrom. 2012;26(3):320-6.
    連結:
  541. 291. Holčapek M, Kolářová L, Nobilis M. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem. 2008;391(1):59-78.
    連結:
  542. 292. Babaev VM, Musin RZ, Strobykina IY, Kataev VE, Gavrilov VI. Studies of isosteviol diterpenoid derivatives by mass spectrometry: II. Fragmentation of isosteviol esters under the electronic impact. Russ J Gen Chem. 2011;81(6):1185-9.
    連結:
  543. 293. Musin RZ, Babaev VM, Strobykina IY, Kataev VE, Gavrilov VI, Musin RR. Mass spectra of isosteviol derivatives: I. Fragmentation of isosteviol derivatives having a schiff base fragment on C-4 under eElectron impact. Russ J Gen Chem. 2009;79(11):2377-82.
    連結:
  544. 294. Piehowski PD, Carado AJ, Kurczy ME, Ostrowski SG, Heien ML, Winograd N, et al. MS/MS methodology to improve sub-cellular mapping of cholesterol using ToF-SIMS. Anal Chem. 2008;80(22):8662-7.
    連結:
  545. 295. Jin H, Wang J, Gerber JP, Davey AK. Disposition of isosteviol in the rat isolated perfused liver. Clin Exp Pharmacol Physiol. 2010;37(5-6):593-7.
    連結:
  546. 297. Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol. 2006;2(6):895-921.
    連結:
  547. 298. Strolin Benedetti M. FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics. Ann Pharm Fr. 2011;69(1):45-52.
    連結:
  548. 299. Benedetti MS. Biotransformation of xenobiotics by amine oxidases. Fundam Clin Pharmacol. 2001;15(2):75-84.
    連結:
  549. 300. Strolin Benedetti M, Tipton KF, Whomsley R. Amine oxidases and monooxygenases in the in vivo metabolism of xenobiotic amines in humans: has the involvement of amine oxidases been neglected? Fundam Clin Pharmacol. 2007;21(5):467-80.
    連結:
  550. 301. Testa B, Kramer SD. The biochemistry of drug metabolism--an introduction: Part 2. Redox reactions and their enzymes. Chem Biodivers. 2007;4(3):257-405.
    連結:
  551. 302. Testa B, Kramer SD. The biochemistry of drug metabolism--an introduction: part 3. Reactions of hydrolysis and their enzymes. Chem Biodivers. 2007;4(9):2031-122.
    連結:
  552. 303. Schulz-Utermoehl T, Spear M, Pollard CR, Pattison C, Rollison H, Sarda S, et al. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology. Drug Metab Dispos. 2010;38(10):1688-97.
    連結:
  553. 304. Parte P, Kupfer D. Oxidation of hamoxifen by human flavin-containing monoxygenase (FMO) 1 and FMO3 FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab Dispos. 2005;33(10):1446-52.
    連結:
  554. 306. Iribarne C, Berthou F, Baird S, Dréano Y, Picart D, Bail JP, et al. Involvement of Cytochrome P450 3A4 Enzyme in the N-Demethylation of Methadone in Human Liver Microsomes. Chem Res Toxicol. 1996;9(2):365-73.
    連結:
  555. 307. Imai T, Taketani M, Suzu T, Kusube K, Otagiri M. In Vitro Identification of the Human Cytochrome P-450 Enzymes Involved in the N-Demethylation of Azelastine. Drug Metab Dispos. 1999;27(8):942-6.
    連結:
  556. 308. Hyland R, Roe EG, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001;51(3):239-48.
    連結:
  557. 309. Ku HY, Ahn HJ, Seo KA, Kim H, Oh M, Bae SK, et al. The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos. 2008;36(6):986-90.
    連結:
  558. 310. Takahiro R, Nakamura S, Kohno H, Yoshimura N, Nakamura T, Ozawa S, et al. Contribution of CYP3A isoforms to dealkylation of PDE5 inhibitors: a comparison between sildenafil N-demethylation and tadalafil demethylenation. Biol Pharm Bull. 2015;38(1):58-65.
    連結:
  559. 314. Choi MH, Skipper PL, Wishnok JS, Tannenbaum SR. Characterization of testosterone 11 beta-hydroxylation catalyzed by human liver microsomal cytochromes P450. Drug Metab Dispos. 2005;33(6):714-8.
    連結:
  560. 315. Krauser JA, Voehler M, Tseng L-H, Schefer AB, Godejohann M, Guengerich FP. Testosterone 1β-hydroxylation by human cytochrome P450 3A4. Eur J Biochem. 2004;271(19):3962-9.
    連結:
  561. 316. Yamazaki H, Shimada T. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997;346(1):161-9.
    連結:
  562. 317. Tseng E, Walsky RL, Luzietti RA, Harris JJ, Kosa RE, Goosen TC, et al. Relative Contributions of Cytochrome CYP3A4 Versus CYP3A5 for CYP3A-Cleared Drugs Assessed In Vitro Using a CYP3A4-Selective Inactivator (CYP3cide). Drug Metab Dispos. 2014;42(7):1163-73.
    連結:
  563. 318. Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938-44.
    連結:
  564. 319. Wang B, Sanchez RI, Franklin RB, Evans DC, Huskey SE. The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos. 2004;32(11):1209-12.
    連結:
  565. 321. Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol. 2004;67(11):2093-102.
    連結:
  566. 322. Ogura K, Ishikawa Y, Kaku T, Nishiyama T, Ohnuma T, Muro K, et al. Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol. 2006;71(9):1358-69.
    連結:
  567. 323. Nakajima M, Tanaka E, Kobayashi T, Ohashi N, Kume T, Yokoi T. Imipramine N-glucuronidation in human liver microsomes: biphasic kinetics and characterization of UDP-glucuronosyltransferase isoforms. Drug Metab Dispos. 2002;30(6):636-42.
    連結:
  568. 324. Testa B, Kramer SD. The biochemistry of drug metabolism--an introduction: part 4. reactions of conjugation and their enzymes. Chem Biodivers. 2008;5(11):2171-336.
    連結:
  569. 325. Ismail IM, Dear GJ, Roberts AD, Plumb RS, Ayrtont J, Sweatman BC, et al. N-O- glucuronidation: a major human metabolic pathway in the elimination of two novel anti-convulsant drug candidates. Xenobiotica. 2002;32(1):29-43.
    連結:
  570. 327. Kaji H, Kume T. Characterization of afloqualone N-glucuronidation: species differences and identification of human UDP-glucuronosyltransferase isoform(s). Drug Metab Dispos. 2005;33(1):60-7.
    連結:
  571. 328. Zhao HY, Hu H, Wang YT. Comparative metabolism and stability of andrographolide in liver microsomes from humans, dogs and rats using ultra-performance liquid chromatography coupled with triple-quadrupole and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(12):1385-92.
    連結:
  572. 329. Kutsuno Y, Sumida K, Itoh T, Tukey RH, Fujiwara R. Glucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes. Pharmacol Res Perspect. 2013;1(1):e00002.
    連結:
  573. 330. Chen WW, Qin GY, Zhang T, Feng WY. In vitro drug metabolism of green tea catechins in human, monkey, dog, rat and mouse hepatocytes. Drug Metab Lett. 2012;6(2):73-93
    連結:
  574. 331. Obach RS. Pharmacologically active drug metabolites: Impact on drug discovery and pharmacotherapy. Pharmacol Rev. 2013;65(2):578-640.
    連結:
  575. 333. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications: CRC Press; 2007. P 125-7.
    連結:
  576. 334. Sathyan G, Xu E, Thipphawong J, Gupta SK. Pharmacokinetic investigation of dose proportionality with a 24-hour controlled-release formulation of hydromorphone. BMC Clin Pharmacol. 2007;7:3
    連結:
  577. Bibliography
  578. 4. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-49.
  579. 45. Di L, Kerns EH. Application of pharmaceutical profiling assays for optimization of drug-like properties. Curr Opin Drug Discov Devel. 2005;8(4):495-504.
  580. 64. Alavijeh MS, Palmer AM. The pivotal role of drug metabolism and pharmacokinetics in the discovery and development of new medicines. Drugs. 2004;7(8):755-63.
  581. 67. WHO. Hepatitis B; 2015 [Available from: http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/index1.html.
  582. 94. Ishikawa T. Immunoregulation of hepatitis B virus infection--rationale and clinical application. Nagoya J Med Sci. 2012;74(3-4):217-32.
  583. 109. Kennedy PT, Lee HC, Jeyalingam L, Malik R, Karayiannis P, Muir D, et al. NICE guidelines and a treatment algorithm for the management of chronic hepatitis B: a review of 12 years experience in west London. Antivir Ther. 2008;13(8):1067-76.
  584. 160. Noosud J, Lailerd N, Kayan A, Boonkaewwan C. In vitro and in vivo assessment of inhibitory effect of stevioside on pro-inflammatory cytokines. Avicenna J Phytomed. 2017;7(2):101-7.
  585. 162. WHO. Evaluation of certain food additives and contaminants. World Health Organization technical report series. 2011(966):1-136.
  586. 163. WHO, FAO. Evaluation of certain food additives and contaminants. 2011 0512-3054 (Print) 0512-3054 (Linking) Contract No.: 960.
  587. 173. Sekihashi K, Saitoh H, Sasaki Y. [Genotoxicity studies of stevia extract and steviol by the comet assay]. J Toxicol Sci. 2002;27(Suppl 1):1-8.
  588. 174. Temcharoen P, Suwannatrai M, Klongpanichpak S, Apibal S, Glinsukon T, Toskulkao C. Evaluation of the effect of steviol on chromosomal damage using micronucleus test in three laboratory animal species. J Med Assoc Thai. 2000;83(Suppl 1):S101-8.
  589. 203. Atkins P. Shriver and Atkins' inorganic chemistry: Oxford University Press, USA; 2010.
  590. 204. Analytical profiles of drug substances. New Bmnswick, New Jersey The Squibb Institute for Medical Research; 1985.
  591. 207. Drug metabolism handbook: concepts and applications. 1 ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2009. p. 160-1.
  592. 213. UCL School of Pharmacy. CHN elemental microanalysis. Gower Street - London: University College London; 2013. Available from: https://www.ucl.ac.uk/pharmacy/facilities/research-services/chn-elemental-microanalysis. (Access date: 11/03/2014)
  593. 219. Brittain HG. Thermodynamic vs. kinetic solubility: Knowing which is which. Am Pharmaceut Rev. 2014. http://www.americanpharmaceuticalreview.com/Featured-Articles/160452-Thermodynamic-vs-Kinetic-Solubility-Knowing-Which-is-Which/ (Access date: 22/05/2014).
  594. 222. Shioiri T. Diphenyl Phosphorazidate (DPPA) - More than three decades later. TCI MAIL. 2007:2-19.
  595. 228. Bazargan M, Gerber JP, Wang J, Chitsaz M, Milne RW, Evans AM. Determination of isosteviol by LC-MS/MS and its application for evaluation of pharmacokinetics of isosteviol in rat. DARU. 2007;15(3):146-50.
  596. 239. Ahuja S. 1 - Overview: Handbook of pharmaceutical analysis by HPLC. In: Satinder A, Michael WD, editors. Separation Science and Technology. Volume 6: Academic Press; 2005. p. 1-17.
  597. 242. Ahuja S. 1 Overview of HPLC method development for pharmaceuticals. In: Satinder A, Henrik R, editors. Separation Science and Technology. Volume 8: Academic Press; 2007. p. 1-11.
  598. 245. Evans G. A handbook of bioanalysis and drug metabolism: CRC press; 2004.
  599. 247. FDA. Guidance for Industry: Bioanalytical method validation; 2013. p. 1 - 28.
  600. 253. EMA. ICH Topic Q 2 (R1) validation of analytical procedures: Text and methodology. Note for guidance on validation of analytical proceedures: text and methodology (CPMP/ICH/381/95); 1995.
  601. 272. Gabrielsson J, Weiner D. Non-compartmental analysis. Methods Mol Biol. 2012;929:377-89.
  602. 285. Li C, Kalyanaraman N. Reaction phenotyping. ADME-enabling technologies in drug design and development: John Wiley & Sons, Inc.; 2012. p. 189-212.
  603. 296. Hawes EM. N+-glucuronidation, a common pathway in human metabolism of drugs with a tertiary amine group. Drug Metab Dispos. 1998;26(9):830-7.
  604. 305. Koyama E, Chiba K, Tani M, Ishizaki T. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997;281(3):1199-210.
  605. 311. Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos. 1997;25(4):502-7.
  606. 312. Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999;27(12):1381-91.
  607. 313. Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994;22(6):909-15.
  608. 320. Kassahun K, Mattiuz E, Franklin R, Gillespie T. Olanzapine 10-N-glucuronide. A tertiary N-glucuronide unique to humans. Drug Metab Dispos. 1998;26(9):848-55.
  609. 326. Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Glucuronidation of Amines and Other Xenobiotics Catalyzed by Expressed Human UDP-Glucuronosyltransferase 1A3. Drug Metab Dispos. 1998;26(6):507-12.
  610. 332. Macherey A-C, Dansette PM. Chapter 33 - Biotransformations leading to toxic metabolites: Chemical aspect A2 - Wermuth, Camille Georges. The practice of medicinal chemistry (Third Edition). New York: Academic Press; 2008. p. 674-96.
  611. Bibliography
  612. 4. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-49.
  613. 45. Di L, Kerns EH. Application of pharmaceutical profiling assays for optimization of drug-like properties. Curr Opin Drug Discov Devel. 2005;8(4):495-504.
  614. 64. Alavijeh MS, Palmer AM. The pivotal role of drug metabolism and pharmacokinetics in the discovery and development of new medicines. Drugs. 2004;7(8):755-63.
  615. 67. WHO. Hepatitis B; 2015 [Available from: http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/index1.html.
  616. 94. Ishikawa T. Immunoregulation of hepatitis B virus infection--rationale and clinical application. Nagoya J Med Sci. 2012;74(3-4):217-32.
  617. 109. Kennedy PT, Lee HC, Jeyalingam L, Malik R, Karayiannis P, Muir D, et al. NICE guidelines and a treatment algorithm for the management of chronic hepatitis B: a review of 12 years experience in west London. Antivir Ther. 2008;13(8):1067-76.
  618. 160. Noosud J, Lailerd N, Kayan A, Boonkaewwan C. In vitro and in vivo assessment of inhibitory effect of stevioside on pro-inflammatory cytokines. Avicenna J Phytomed. 2017;7(2):101-7.
  619. 162. WHO. Evaluation of certain food additives and contaminants. World Health Organization technical report series. 2011(966):1-136.
  620. 163. WHO, FAO. Evaluation of certain food additives and contaminants. 2011 0512-3054 (Print) 0512-3054 (Linking) Contract No.: 960.
  621. 173. Sekihashi K, Saitoh H, Sasaki Y. [Genotoxicity studies of stevia extract and steviol by the comet assay]. J Toxicol Sci. 2002;27(Suppl 1):1-8.
  622. 174. Temcharoen P, Suwannatrai M, Klongpanichpak S, Apibal S, Glinsukon T, Toskulkao C. Evaluation of the effect of steviol on chromosomal damage using micronucleus test in three laboratory animal species. J Med Assoc Thai. 2000;83(Suppl 1):S101-8.
  623. 203. Atkins P. Shriver and Atkins' inorganic chemistry: Oxford University Press, USA; 2010.
  624. 204. Analytical profiles of drug substances. New Bmnswick, New Jersey The Squibb Institute for Medical Research; 1985.
  625. 207. Drug metabolism handbook: concepts and applications. 1 ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2009. p. 160-1.
  626. 213. UCL School of Pharmacy. CHN elemental microanalysis. Gower Street - London: University College London; 2013. Available from: https://www.ucl.ac.uk/pharmacy/facilities/research-services/chn-elemental-microanalysis. (Access date: 11/03/2014)
  627. 219. Brittain HG. Thermodynamic vs. kinetic solubility: Knowing which is which. Am Pharmaceut Rev. 2014. http://www.americanpharmaceuticalreview.com/Featured-Articles/160452-Thermodynamic-vs-Kinetic-Solubility-Knowing-Which-is-Which/ (Access date: 22/05/2014).
  628. 222. Shioiri T. Diphenyl Phosphorazidate (DPPA) - More than three decades later. TCI MAIL. 2007:2-19.
  629. 228. Bazargan M, Gerber JP, Wang J, Chitsaz M, Milne RW, Evans AM. Determination of isosteviol by LC-MS/MS and its application for evaluation of pharmacokinetics of isosteviol in rat. DARU. 2007;15(3):146-50.
  630. 239. Ahuja S. 1 - Overview: Handbook of pharmaceutical analysis by HPLC. In: Satinder A, Michael WD, editors. Separation Science and Technology. Volume 6: Academic Press; 2005. p. 1-17.
  631. 242. Ahuja S. 1 Overview of HPLC method development for pharmaceuticals. In: Satinder A, Henrik R, editors. Separation Science and Technology. Volume 8: Academic Press; 2007. p. 1-11.
  632. 245. Evans G. A handbook of bioanalysis and drug metabolism: CRC press; 2004.
  633. 247. FDA. Guidance for Industry: Bioanalytical method validation; 2013. p. 1 - 28.
  634. 253. EMA. ICH Topic Q 2 (R1) validation of analytical procedures: Text and methodology. Note for guidance on validation of analytical proceedures: text and methodology (CPMP/ICH/381/95); 1995.
  635. 285. Li C, Kalyanaraman N. Reaction phenotyping. ADME-enabling technologies in drug design and development: John Wiley & Sons, Inc.; 2012. p. 189-212.
  636. 296. Hawes EM. N+-glucuronidation, a common pathway in human metabolism of drugs with a tertiary amine group. Drug Metab Dispos. 1998;26(9):830-7.
  637. 305. Koyama E, Chiba K, Tani M, Ishizaki T. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997;281(3):1199-210.
  638. 311. Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos. 1997;25(4):502-7.
  639. 312. Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999;27(12):1381-91.
  640. 313. Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994;22(6):909-15.
  641. 320. Kassahun K, Mattiuz E, Franklin R, Gillespie T. Olanzapine 10-N-glucuronide. A tertiary N-glucuronide unique to humans. Drug Metab Dispos. 1998;26(9):848-55.
  642. 326. Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Glucuronidation of Amines and Other Xenobiotics Catalyzed by Expressed Human UDP-Glucuronosyltransferase 1A3. Drug Metab Dispos. 1998;26(6):507-12.
  643. 332. Macherey A-C, Dansette PM. Chapter 33 - Biotransformations leading to toxic metabolites: Chemical aspect A2 - Wermuth, Camille Georges. The practice of medicinal chemistry (Third Edition). New York: Academic Press; 2008. p. 674-96.