题名

降雨特性對坡地崩塌之影響評估

并列篇名

Impact of Rainfall Characteristics on Landslide Assessment

作者

林琦雯

关键词

山崩 ; 雨型 ; 降雨強度 ; 衛星影像判釋 ; 地理資訊系統 ; landslide ; rainfall pattern ; rainfall intensity ; satellite image interpretation ; geographic information system

期刊名称

長榮大學土地管理與開發學系(所)學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳怡睿

内容语文

繁體中文

中文摘要

臺灣三分之二以上的土地屬於山坡地,加上全球氣候異常之極端降雨,導致山崩災害頻傳,並伴隨著生命財產之重大損失,造成政府單位與社會相當大之負擔。因此,有效地評估降雨影響之坡地崩塌,可提供相關單位參考,期能減少災害導致的衝擊與傷害 本研究以南台灣曾文水庫及南化水庫集水區之部分區域為範圍,採用2009年、2010年及2013年共7場颱風及降雨事件前後之福衛二號衛星影像,運用基因演算自動化類神經網路技術進行影像判釋分類,以獲得各降雨事件前後之地表資訊,進而進行崩塌地之擷取。本研究利用徐昇多邊形推算研究區不同雨量測站所影響之範圍分析降雨之特性,並探討不同雨型、雨量與延時等特性與崩塌地區位及規模間之關係。 影像判釋結果顯示,不同時期衛星影像之一致性係數Kappa指標平均達0.75,具有中高程度的精確度。各雨量測站利用72小時之降雨延時,可推估出前鋒型、中鋒型、後鋒型、雙鋒型以及三鋒型等五類降雨型態。結果亦顯示,較少的累積雨量時,降雨型態之不同會影響崩塌數量及崩塌規模之大小,惟較大之累積雨量時,則無明顯之關聯性。此外,不論何種降雨型態,研究範圍之坡地崩塌大多發生在坡度介於20°~40°之間,惟前鋒及中鋒型之降雨型態引致之崩塌點位較集中在坡度20°~30°間,而其餘類型之降雨所引致之崩塌則較集中在坡度介於30°~40°間。再者,在類同之累積雨量下,前鋒及中鋒型的降雨型態所引致之研究區崩塌地區位高程遠高於其餘降雨型態。

英文摘要

About two-thirds of Taiwan’s total area is covered by mountains and hills. Coupled with the global climate change, rainfall-induced landslides often occur and lead to human causalities and properties loss. Therefore, the assessment of rainfall-induced landslides is indeed an important task. The study areas in this research are the Tsengwen and Nanhua Dam watershed in the southern Taiwan. The FORMOSAT satellite images before and after the years 2009-2013 (including 7 typhoons and rainfall events) were acquired and used. The Genetic Adaptive Neural Network (GANN) was implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data. The scope of the impact of different rainfall stations in the study area was estimated using Thiessen's Polygon Method to explore the characteristics of rainfall. The relationship between the pattern, amount, and duration of rainfall and location and scale of landslide was also explored. The results of image classification show that the average value of coefficient of agreement is 0.75 at medium-high level. The rainfall patterns are classified into 5 types using 72-hour rainfall duration for each rainfall station: pre-peak, central-peak, post-peak, twin-peak, and tri-peak. The results also show that when the accumulated rainfall is small, rainfall pattern affect the number and scale of landslides. When the accumulated rainfall is large, there is no correlation between rainfall patterns and landslides. Furthermore, regardless rainfall patterns most landslide sites occur in slope between 20˚ and 40˚. Pre-peak and central-peak rainfall-induced landslides sites occur in slope between 20˚ and 30˚. The other rainfall-induced landslides sites occur in slope between 30˚ and 40˚. Moreover, in the case of the same accumulated rainfall, the elevations of landslides induced by pre-peak and central-peak are much higher than those induced by the others.

主题分类 人文學 > 地理及區域研究
管理學院 > 土地管理與開發學系(所)
参考文献
  1. 何幸娟、林伯勳、尹一帆、冀樹勇、施美琴、尹孝元(2010),應用遙測技術結合空載LiDAR探討神木地區莫拉克颱風引致土砂災害及產量評估,水保技術,第5卷,第4期,第191-203頁。
    連結:
  2. 何明錦、陳昆廷、林欽川、王弘祐、蔡光榮(2007),GPS/GIS/RS科技整合應用於南投縣坡地地區環境潛勢災害分析模式之研究,中華民國建築學會「建築學報 62 期增刊(技術專刊)」,第117~132頁。
    連結:
  3. 周天穎、雷祖強、陳駿賢(2003),遙測及景觀分析技術於崩塌地判釋與變遷之研究,中華水土保持學報,第34卷,第4期,第353-368頁。
    連結:
  4. 林文賜、黃碧慧(2012),應用地理資訊系統與資料探勘技術於崩塌地特性及空間關聯性分析之研究-以莫拉克風災之阿里山溪集水區為例,水保技術,第7卷,第1期,第23-29頁。
    連結:
  5. 林洧全(2011)。衛星影像判釋技術應用於山崩潛勢分析及風險評估模式建置之研究。長榮大學土地管理與開發學系碩士班,碩士論文,台南。
    連結:
  6. 林美聆、陳彥澄(2014),應用光達地形資料於莫拉克災後陳有蘭溪流域崩塌與土石流地質敏感地區判釋與分析,航測及遙測學刊,第18卷,第2期,第129-144頁。
    連結:
  7. 林恩如、劉正千、張智華、鄭依凡、柯明勳(2013),運用福衛二號高時空分辨率多光譜影像於台灣全島崩塌地判釋與災害分析,航測及遙測學刊,第17卷,第1期,第31-51頁。
    連結:
  8. 邱奕勛(2012),降雨量與誘發山崩發生率之關係。國立中央大學應用地質研究所碩士論文,桃園。
    連結:
  9. 倪伯寧(2009)。土砂災害潛勢區風險評估模式之建置。長榮大學土地管理與開發學系碩士班,碩士論文,台南。
    連結:
  10. 徐逸祥、朱子豪(2013),光學式衛星影像雲層處理之研究,航測及遙測學刊,第17卷,第2期,第115-134頁。
    連結:
  11. 陳怡睿、林洧全、謝舜傑(2011),坡地利用影響山崩潛勢之評估模式建置-以寶來地區歷經莫拉克颱風為例,中華水土保持學報,第42卷,第3期,第251-262頁。
    連結:
  12. 陳儒賢、許臣王(2010),台灣地區區域性設計雨型建立之研究,中華水土保持學報,第41卷,第3期,第277-284頁。
    連結:
  13. 楊宏慶(2012),降雨強度與邊坡特性對邊坡穩定分析影響之研究。國立成功大學資源工程學系研究所碩士論文,台南。
    連結:
  14. 鄭士仁、李正豐、謝惠紅、李如晃(2010),應用降雨特性評估雨量估計方法及其應用,農業工程學報,第56卷,第2期。
    連結:
  15. 盧惠生(1997),蓮花池地區24小時降雨型態特性及設計雨型歷線,台灣林業科學,第12卷,第4期,第481-489頁。
    連結:
  16. 盧惠生(1999),「畢祿溪地區不同紀錄年限24小時降雨延時之設計雨型歷線」,中華水土持學報,第30卷,第4期,第289-298頁。
    連結:
  17. 賴明煌、李德河、吳建宏、李壁玲(2014),以雨量基準建立公路通行管理準則-以阿里山公路為例,中華防災學刊,第6卷,第1期。
    連結:
  18. 賴哲儇、蔡富安、林岑彧、陳偉堯、林唐煌,資料探勘技術於坡地崩塌之驗證與潛勢評估,航測及遙測學刊,第17卷,第2期,第149-160頁。
    連結:
  19. 鍾明劍、譚志豪、陳勉銘、蘇泰維(2013),以定率法評估邊坡山崩臨界雨量-以南勢坑為例,中華水土保持學報,第44卷,第1期,第66-67頁。
    連結:
  20. 羅鴻傑、許世孟、顧承宇、蘇泰維、李錦發(2010),降雨特性對坡地穩定性影響之關聯性研究-以義興崩塌地為例,中興工程季刊,第106期,第17-25頁。
    連結:
  21. 譚志豪、陳嬑璇、冀樹勇(2009),以定率法評估集水區山崩臨界雨量,中興工程季刊,第105期,第5-16頁。
    連結:
  22. Caine, N. (1980) “Duration Control of Shallow Landslides and Debris Flows,” Physical Geography, Vol. 62, No.1/2, pp.23-27.
    連結:
  23. Huff, F. A. (1967), “Time distribution ofrainfall in heavy storm,” Water Resour. Res.3 (4):1007-1019.
    連結:
  24. Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNeill, S. J., and Glassey, P. J. (2009). “A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters,” Progress in Physical Geography, 33, pp. 183-207.
    連結:
  25. Tsou, C. Y., Feng, Z. Y. and Chigira, M. (2011). “Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan,” Geomorphology, 127, pp. 166-178.
    連結:
  26. Van Westen, C.J., Van Asch, T.W.J. and Soeters, R. (2006). “Landslide hazard and risk zonation-why is it so difficult,” Bulletin of Engineering Geology and the Environment, 65(2), pp. 167-184.
    連結:
  27. 【中文】
  28. 台灣省公共工程局(1969),「台北市雨水下水道系統規劃報告」,台灣省公共工程局編印,p.118。
  29. 台灣省水利局(1982),「水文資料分析與電子計算機應用手冊」,台灣省水利局編印,pp.124。
  30. 周天穎(2003),地理資訊系統理論與實務,台北,儒林圖書。
  31. 黃敏郎、劉守恆(2005),地理資訊系統基礎操作實務,台北,松岡,仲琦科技。
  32. 蔡博文、丁志堅(2006),新一代地理資訊系統ArcView 9.x剖析,台北,仲琦科技。
  33. 【外文】
  34. Ali, A., Huang, J., Lyamin, A. V., Sloan, S. W. and Cassidy, M. J. (2014). “Boundary effects of rainfall-induced landslides,” Computers and Geotechnics, 61, pp. 351-354.