题名

非耗盡分群方法為基之可重疊專利分群方法論研究

并列篇名

Non-exhaustive Clustering for Overlapping Patent Clusters Analysis

DOI

10.6843/NTHU.2007.00025

作者

黃盈碩

关键词

專利分析 ; 非耗盡分群 ; 科技預測 ; 本體論 ; patent analysis ; Non-exhaustive clustering ; technology forecasting ; ontology

期刊名称

清華大學工業工程與工程管理學系學位論文

卷期/出版年月

2007年

学位类别

碩士

导师

張瑞芬

内容语文

繁體中文

中文摘要

為了掌握科技與產業趨勢之脈動,面對知識經濟時代接踵而來的挑戰,企業運用科技預測提供之訊息進行決策與佈局。科技預測可用於評估科技是否達到發展瓶頸,預測手法亦推陳出新。其中對於預測結果最顯著影響的關鍵,在於分析資料本身的意義,過去科技預測主要以市場占有率或是功能方面成長等商業資料分析,然而學者Campbell (1983)研究指出,專利數量的文章篇數比科學刊物中的文章篇數,更能表現技術發展的起伏。根據世界智慧財產局 (WIPO, 1996)報告,專利是唯一能揭露核心技術的知識文件,其傳遞科技核心的比率遠高於期刊、報導或是研究報告,因此專利本身也能作為科技預測的分析對象,更延伸出將每年專利數量視為「知識市場」的市場占有率的概念。在本論文中,我們提出一個以非耗盡分群方法運用於科技預測系統,非耗盡分群方法最大的特色在於一個物件可能被分群在多個群集中,能夠表達專利文件本身有多元的內容與意涵。藉由定義好的RFID本體論以及NTF-IDF為基之技術,擷取該領域代表字進行分群,藉以獲得專利文件之群集。分群步驟完成之後,使用者能夠依照專利文件群集進行科技預測,可獲得各群集隨時間消長起伏之趨勢。本論文預期成果是系統能精確的擷取領域關鍵辭彙,以群集彼此可重疊的分群結果作為預測之輸入,而預測之趨勢能以視覺化圖形呈現,幫助使用者或專利工程師能夠快速找到所需的專利隸屬的群集,以及這群專利的未來發展趨勢,以利企業之間專利技術之攻防。

英文摘要

Facing the challenges from a knowledge-based economy, having a comprehensive understanding insights of technology and industry development is the basic and necessary requirement to gain competitive edges for enterprises. Consequently, enterprises apply technology forecasting techniques to assist generating useful information for further R&D strategic decisions. Nonetheless, current technology forecasting analyses base mostly on macro-indicators such as market share and growth rate rather than on specific technology development information, such as invention and patents of certain technology. In Campbell’s (1983) research, he found that patent documents often better expresses the development trend of technology when compare with ordinary scientific journals. Moreover, according to the report of WIPO (1996), patent documents can better reveal the core technology and innovation than other knowledge documents such as journal papers and technical reports. As a result, we try to incorporate patent analysis while proceed technology forecasting. In this research, a non-exhaustive clustering methodology is proposed as the basis for a novel technology forecasting system. Non-exhaustive clustering methodology allows overlapping of patent documents, which is plausible when any patent can claim multiple key technical inventions. The characteristic of non-exhaustivity emphasizes that one patent contains multiple technology breakthroughs. We use Radio Frequency Identification (RFID) as case example in this research. RFID ontology is constructed. Afterward, refined Normalized Term Frequency/Inverse Document Frequency (NTF-IDF) key-phrase extraction methodology is developed to extract representative key phrases for following clustering procedure. Finally, the non-exhaustive clustering methodology is applied to generate overlapping clusters of patents. The clustering results and analysis of growth trend for each cluster provide users a clear view of patent distribution in a given broad technology area (e.g., RFID). The expected results of this research contain extracting domain key phrases precisely, using the non-exhaustive clustering results as input data of technology forecasting and finally visualize the technology trend. This system enables R&D engineers and managers to find the existing patents related to their interested technical domains (clusters) and enable them to strengthen their R&D efforts offensively and defensively.

主题分类 工學院 > 工業工程與工程管理學系
工程學 > 工程學總論
社會科學 > 管理學
被引用次数
  1. 張富雄(2012)。整合專利多元尺度分析與萃思方法論之產品創新設計流程。臺北科技大學工業工程與管理系碩士班學位論文。2012。1-104。