题名

在布朗連續雜訊及卜瓦松不連續雜訊下的飛彈導引多目標 控制

并列篇名

Multi-objective Missile Guidance Control with Stochastic Continuous Wiener and Discontinuous Poisson Noises

作者

謝昭夷

关键词

哈密頓-雅可比不等式 ; 線性矩陣不等式 ; 多目標進化演算法 ; 多目標H2/H∞導引法 ; 帕雷托最優解 ; Hamilton-Jacobin inequality (HJI) ; Linear matrix inequality (LMI) ; Multi-objective evolutionary algorithm (MOEA) ; Multi-objective (MO) H_2/H_∞ guidance law ; Pareto optimal solution

期刊名称

清華大學電機工程學系所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳博現

内容语文

英文

中文摘要

本文提出的多目標導引法,可以同時最佳化 H_2 和 H_∞ 目標。第一個設計目標為 H_2 控制,飛彈內部要能夠容忍在布朗連續雜訊及卜瓦松不連續雜訊下對目標做攔截,其中,飛彈模型內部的不確定性及陀螺儀因飛彈位移造成的累積誤差視為維納連續雜訊;為了因應目標突發性側向閃躲,造成飛彈達偵測誤判作則視為卜瓦松不連續雜訊。第二個設計目標 H_∞ 控制,則是濾掉在飛彈導航過程中的外部干擾,在本文視為目標的加速度。 本文透過間接法來處理多目標 H_2/H_∞ 飛彈導引問題,為了避免處理 Hamilton-Jacobin 不等式,本文提出模糊內插法將其轉為現性矩陣不等式,並運用多目標演化演算法來求解多目標 H_2/H_∞ 飛彈導引問題。最後,會透過一個模擬範例來說明設計步驟並驗證本文所提出的多目標 H_2/H_∞ 導引法的效能。

英文摘要

This study proposes a Multi-objective (MO) guidance law simultaneously for optimal H_2 missile interception with stochastic continuous Wiener noise and discontinuous Poisson jump noise as well as optimal H_∞ external disturbance filtering of external disturbance on missile guidance. The first design objective of optimal H_2 missile interception is to minimize the effect of intrinsic stochastic Wiener noise due to modeling uncertainty of the missile and the accumulated angle error of the gyroscope as well as the intrinsic stochastic Poisson jump noise due to the inaccurate radar measurement of the missile because of the target suddenly side-step maneuver. The second design objective of H_∞ external disturbance filtering is to minimize the effect of external disturbance due to the target’s acceleration on the missile guidance. An indirect method is proposed to solve the MO H_2/H_∞ guidance problem of missiles. In order to avoid solving a Hamilton-Jacobin inequality (HJI)-constrained MO H_2/H_∞ missile guidance problem based on Pareto optimal solution, fuzzy interpolation method is proposed to transform the HJI-constrained MO missile guidance problem to a linear matrix inequalities (LMIs)-constrained MO missile guidance problem. An LMIs-based MO Evolutionary Algorithm (MOEA) is also proposed to solve the MO H_2/H_∞ missile guidance problem. Finally, a simulation example is conducted to illustrate the design procedure and to validate the performance of the proposed MO H_2/H_∞ guidance law.

主题分类 電機資訊學院 > 電機工程學系所
工程學 > 電機工程
参考文献
  1. [1] G. M. Siouris, Mis1guidance and control systems. Springer Science & Business
    連結:
  2. intercept body angle,” IEEE Transactions on Aerospace and Electronic Systems,
    連結:
  3. [6] N. Dhananjay, K.-Y. Lum, and J.-X. Xu, “Proportional navigation with delayed line-
    連結:
  4. of-sight rate,” IEEE Transactions on Control Systems Technology, vol. 21, no. 1, pp.
    連結:
  5. 247–253, 2013.
    連結:
  6. [7] K. D. S. Raj and I. S. S. Ganesh, “Estimation of line-of-sight rate in a homing mis-
    連結:
  7. 62[8] C.-M. Lin and Y.-J. Mon, “Fuzzy-logic-based clos guidance law design,” IEEE Trans-
    連結:
  8. actions on Aerospace and Electronic Systems, vol. 37, no. 2, pp. 719–727, 2001.
    連結:
  9. [9] D. Dawson, Z. Qu, and F. Lewis, “Hybrid adaptive-robust control for a robot ma-
    連結:
  10. nipulator,” International journal of adaptive control and signal processing, vol. 6,
    連結:
  11. no. 6, pp. 537–545, 1992.
    連結:
  12. [10] Z. Koruba and L. Nocon, “Programmed control of the fl at track anti-tank guided
    連結:
  13. tory modulation for observability enhancement,” IEEE Transactions on Aerospace
    連結:
  14. and Electronic Systems, vol. 49, no. 1, pp. 55–73, 2013.
    連結:
  15. [14] C. Heller and I. Yaesh, “Proportional navigation with integral action,” in MELECON
    連結:
  16. [15] M. Guelman, “Proportional navigation with a maneuvering target,” IEEE Transac-
    連結:
  17. tions on Aerospace and Electronic Systems, no. 3, pp. 364–371, 1972.
    連結:
  18. 63[16] P.-J. Yuan and J.-S. Chern, “Ideal proportional navigation,” Journal of Guidance,
    連結:
  19. Control, and Dynamics, vol. 15, no. 5, pp. 1161–1165, 1992.
    連結:
  20. [18] C.-D. Yang and C.-C. Yang, “Analytical solution of generalized 3d proportional nav-
    連結:
  21. [19] Z. Xiong, J. Chen, Q. Li, and Z. Ren, “Time-varying lqr on hypersonic vehicle profi le-
    連結:
  22. [20] G. Hexner, T. Shima, and H. Weiss, “An lqg guidance law with bounded acceleration
    連結:
  23. [21] G. Hexner and H. Weiss, “Stochastic approach to optimal guidance with uncertain
    連結:
  24. intercept time,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46,
    連結:
  25. [22] N. Harl and S. Balakrishnan, “Impact time and angle guidance with sliding mode
    連結:
  26. control,” IEEE Transactions on Control Systems Technology, vol. 20, no. 6, pp.
    連結:
  27. [23] F.-K. Yeh, “Adaptive-sliding-mode guidance law design for missiles with thrust vec-
    連結:
  28. no. 4, pp. 552–559, 2012.
    連結:
  29. [25] C. Hu, X. Hu, and S. Fang, “Fuzzy switched h∞ control for fl exible air-breathing
    連結:
  30. [26] H.-J. Uang and B.-S. Chen, “Robust adaptive optimal tracking design for uncertain
    連結:
  31. missile systems: a fuzzy approach,” Fuzzy Sets and Systems, vol. 126, no. 1, pp.
    連結:
  32. 63–87, 2002.
    連結:
  33. saturation of actuators against maneuvering targets,” IEEE Transactions on Control
    連結:
  34. [28] C.-L. Lin, H.-Z. Hung, Y.-Y. Chen, and B.-S. Chen, “Development of an integrated
    連結:
  35. fuzzy-logic-based missile guidance law against high speed target,” IEEE Transactions
    連結:
  36. on Fuzzy Systems, vol. 12, no. 2, pp. 157–169, 2004.
    連結:
  37. systems: Stability and design issues,” IEEE transactions on fuzzy systems, vol. 4,
    連結:
  38. [30] C.-L. Lin and T.-L. Wang, “Fuzzy side force control for missile against hypersonic
    連結:
  39. with output feedback,” IEEE Transactions on Automatic Control, vol. 38, no. 4, pp.
    連結:
  40. 546–559, 1993.
    連結:
  41. [33] B.-S. Chen and C.-F. Wu, “Robust scheduling fi lter design for a class of nonlinear
    連結:
  42. stochastic poisson signal systems,” IEEE Transactions on Signal Processing, vol. 63,
    連結:
  43. [37] P.-L. Chow, Stochastic partial diff erential equations. CRC Press, 2014.
    連結:
  44. [39] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a linear
    連結:
  45. matrix inequality approach. John Wiley & Sons, 2004.
    連結:
  46. systems via fuzzy linear control,” IEEE Transactions on fuzzy systems, vol. 7, no. 5,
    連結:
  47. pp. 571–585, 1999.
    連結:
  48. optimization method for distribution network reconfi guration,” IEEE Transactions
    連結:
  49. [42] W.-Y. Chiu, H. Sun, and H. V. Poor, “A multiobjective approach to multimicrogrid
    連結:
  50. system design,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2263–2272,
    連結:
  51. evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 18,
    連結:
  52. Media, 2004.
  53. [2] C.-F. Lin, Modern navigation, guidance, and control processing. Prentice Hall
  54. Englewood Cliff s, 1991, vol. 2.
  55. [3] A. S. Locke, Guidance. D. Van Nostrand Company, 1955, vol. 1.
  56. [4] N. F. Palumbo, R. A. Blauwkamp, and J. M. Lloyd, “Basic principles of homing
  57. guidance,” Johns Hopkins APL Technical Digest, vol. 29, no. 1, pp. 25–41, 2010.
  58. [5] I. Rusnak, H. Weiss, R. Eliav, and T. Shima, “Missile guidance with constrained
  59. vol. 50, no. 2, pp. 1445–1453, 2014.
  60. sile guidance loop using optimal fi lters,” in Communications and Signal Processing
  61. (ICCSP), 2015 International Conference on. IEEE, 2015, pp. 0398–0402.
  62. missile,” in Control Conference (ICCC), 2014 15th International Carpathian. IEEE,
  63. 2014, pp. 237–242.
  64. [11] T.-H. Kim, C.-H. Lee, and M.-J. Tahk, “Time-to-go polynomial guidance with trajec-
  65. [12] R. H. Venkatesan and N. K. Sinha, “A new guidance law for the defense missile
  66. of nonmaneuverable aircraft,” IEEE Transactions on Control Systems Technology,
  67. vol. 23, no. 6, pp. 2424–2431, 2015.
  68. [13] C.-H. Lee, T.-H. Kim, and M.-J. Tahk, “Biased png for target observability en-
  69. hancement against nonmaneuvering targets,” IEEE Transactions on Aerospace and
  70. Electronic Systems, vol. 51, no. 1, pp. 2–17, 2015.
  71. 2010-2010 15th IEEE Mediterranean Electrotechnical Conference. IEEE, 2010, pp.
  72. 1546–1550.
  73. [17] C.-M. Lin, C.-F. Hsu, S.-K. Chang, and R.-J. Wai, “Guidance law evaluation for
  74. missile guidance systems,” Asian Journal of Control, vol. 2, no. 4, pp. 243–250,
  75. 2000.
  76. igation,” in Decision and Control, 1995., Proceedings of the 34th IEEE Conference
  77. on, vol. 4. IEEE, 1995, pp. 3974–3979.
  78. following,” in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on.
  79. IEEE, 2014, pp. 994–998.
  80. command,” in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on,
  81. vol. 1. IEEE, 2003, pp. 715–720.
  82. no. 4, pp. 1804–1820, 2010.
  83. 1436–1449, 2012.
  84. 64tor control and divert control system,” IET control theory & applications, vol. 6,
  85. [24] A. Zhurbal and M. Idan, “Eff ect of estimation on the performance of an integrated
  86. missile guidance and control system,” IEEE Transactions on Aerospace and Elec-
  87. tronic systems, vol. 47, no. 4, pp. 2690–2708, 2011.
  88. hypersonic vehicles,” in Guidance, Navigation and Control Conference (CGNCC),
  89. 2014 IEEE Chinese. IEEE, 2014, pp. 1895–1899.
  90. [27] B.-S. Chen, Y.-Y. Chen, and C.-L. Lin, “Nonlinear fuzzy h∞ guidance law with
  91. Systems Technology, vol. 10, no. 6, pp. 769–779, 2002.
  92. [29] H. O. Wang, K. Tanaka, and M. F. Griffi n, “An approach to fuzzy control of nonlinear
  93. no. 1, pp. 14–23, 1996.
  94. target,” IET Control Theory & Applications, vol. 1, no. 1, pp. 33–43, 2007.
  95. 65[31] C.-L. Lin and C.-L. Hwang, “A dynamically fuzzy gain–scheduled design for missile
  96. autopilot,” The Aeronautical Journal (1968), vol. 107, no. 1076, pp. 599–606, 2003.
  97. [32] J. A. Ball, J. W. Helton, and M. L. Walker, “h 2 /h∞ control for nonlinear systems
  98. no. 23, pp. 6245–6257, 2015.
  99. [34] B.-S. Chen, W.-H. Chen, and H.-L. Wu, “Robust h 2 /h∞ global linearization fi lter
  100. design for nonlinear stochastic systems,” IEEE Transactions on Circuits and Systems
  101. I: Regular Papers, vol. 56, no. 7, pp. 1441–1454, 2009.
  102. [35] S. Sivasundaram, Advances in dynamics and control. CRC Press, 2004, vol. 2.
  103. [36] F. B. Hanson, Applied stochastic processes and control for Jump-diff usions: modeling,
  104. analysis, and computation. Siam, 2007, vol. 13.
  105. [38] B.-S. Chen, H.-C. Lee, and C.-F. Wu, “Pareto optimal fi lter design for nonlinear
  106. stochastic fuzzy systems via multiobjective h 2 /h∞ optimization,” IEEE Transactions
  107. on Fuzzy Systems, vol. 23, no. 2, pp. 387–399, 2015.
  108. 66[40] B.-S. Chen, C.-S. Tseng, and H.-J. Uang, “Robustness design of nonlinear dynamic
  109. [41] A. Asrari, S. Lotfi fard, and M. S. Payam, “Pareto dominance-based multiobjective
  110. on Smart Grid, vol. 7, no. 3, pp. 1401–1410, 2016.
  111. 2015.
  112. [43] W.-Y. Chiu, B.-S. Chen, and H. V. Poor, “A multiobjective approach for source
  113. estimation in fuzzy networked systems,” IEEE Transactions on Circuits and Systems
  114. I: Regular Papers, vol. 60, no. 7, pp. 1890–1900, 2013.
  115. [44] Z. He, G. G. Yen, and J. Zhang, “Fuzzy-based pareto optimality for many-objective