题名

探討脂肪幹細胞以及BALB/c 3T3纖維母細胞在蠶絲布上的生長特性

并列篇名

Investigation of the properties of adipose-derived stem cells and BALB/c 3T3 fibroblasts grown on silk fabric-based scaffolds

作者

林俐岑

关键词

疝氣 ; 蠶絲蛋白 ; 脂肪幹細胞 ; 纖維母細胞 ; 蠶絲布 ; 膠原蛋白 ; hernia ; fibroin ; adipose-derived stem cell ; fibroblast ; silk fabric ; collagen

期刊名称

清華大學分子醫學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

張晃猷

内容语文

英文

中文摘要

疝氣是一種常見的疾病,為腹腔內的器官從正常的位置跑到不正常的位置被擠壓到腹腔外。而在疝氣修補手術中需植入修補網片,以重建及增強薄弱腹壁組織的強度,避免再次復發。大部分的修補網片是人工合成材料,這些材料可能會造成病患的異物感或引發免疫反應。蠶絲蛋白是一種天然聚合物,近年來在組織工程的應用非常廣泛。由於蠶絲有良好的力學特性以及生物相容性,利用蠶絲所編織成的布具有作為疝氣修補網片的潛力。本研究利用蠶絲布作為讓細胞生長的支架,並探討其免疫刺激性,以了解蠶絲布作為疝氣修補網片的可能性。首先,在溶解蠶絲蛋白或膠原蛋白處理或沒有處理過的蠶絲布上培養人類脂肪幹細胞以及BALB/c 3T3纖維母細胞,再利用 LIVE/DEAD 染劑觀察細胞在蠶絲布上的生長狀況。我們也利用 alamarBlue assay 進行細胞活性分析。結果顯示,經過溶解蠶絲蛋白處理過的蠶絲布細胞生長狀況最為良好。接著,我們測量脂肪幹細胞分泌的生長因子,如鹼性成纖維細胞生長因子以及肝細胞生長因子,結果顯示,跟細胞生長在培養皿中比較,在蠶絲布上生長的脂肪幹細胞會分泌較多的生長因子。我們也測試蠶絲布是否會誘導老鼠巨噬細胞RAW264.7分泌發炎因子TNF 及 IL-6,結果顯示,蠶絲布不會誘導巨噬細胞分泌 TNF 以及 IL-6。最後,我們測試蠶絲布的降解能力,將蠶絲布浸泡在細胞培養液中持續三週,觀察其重量變化,結果顯示,蠶絲布在細胞培養液中不容易被分解。綜合以上結果,蠶絲蛋白和膠原蛋白可作為良好基質提供細胞生長,而蠶絲布有良好的生物相容性,並不會引起發炎反應。未來,蠶絲布可作為良好的疝氣修補材料。

英文摘要

A hernia is a common disease occurs when an organ protrudes through a tissue holding it in the normal position. Surgeons use meshes to repair hernias. Most of the meshes are made of synthetic materials such as polyethylene, polypropylene, polyester and polytetrafluoroethylene that may easily lead to foreign body reactions. Silk fibroin from silkworm is a nature polymer applied widely in tissue engineering, possessing excellent mechanical property and biocompatibility. We proposed that silk fibroin has a potential to be used as a hernia repair mesh when knitted into a fabric. This study utilized silk fabric, obtained from a commercial source, as a scaffold to support cell growth. We investigated the characteristics of cells grown on the scaffold and determined whether the scaffold evokes an immune response. First, BALB/c 3T3 and adipose-derived stem cells (ADSCs) cultured on a silk fabric with or without dissolved fibroin or collagen coating were examined by LIVE/DEAD staining. Cell viability of BALB/c 3T3 and ADSCs was measured using alamarBlue assay. Results showed that silk fabric with fibroin coating improved BALB/c 3T3 and ADSCs growth. Furthermore, we found that basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) were produced in a higher level from ADSCs cultured on silk fabric with fibroin coating. Next, we tested TNF and IL-6 production from macrophage line RAW264.7 cultured on silk fabric. The result showed that silk fabric would not trigger TNF and IL-6 production from RAW264.7. Furthermore, silk fabric would not degrade in culture medium for several days. Therefore, silk fabric with fibroin or collagen coating can be developed into a novel hernia repair mesh in the future. To sum up, silk fibroin and collagen provide a suitable matrix for cell growth on silk fabric.

主题分类 醫藥衛生 > 基礎醫學
生命科學院 > 分子醫學研究所
参考文献
  1. 2. Sharma, A. and P. Chelawat, Endo-laparoscopic inguinal hernia repair: What is its role? Asian J Endosc Surg, 2017 May;10(2):111-118.
    連結:
  2. 3. Raveenthiran, V. and Agarwal P, Choice of Repairing Inguinal Hernia in Children: Open Versus Laparoscopy. Indian J Pediatr, 2017 May 27.
    連結:
  3. 4. Garcia-Amador C, De la Plaza R, Arteaga V, Lopez-Marcano A, Ramia J, Garengeot's hernia: two case reports with CT diagnosis and literature review. Open Med (Wars), 2016 Oct 7;11(1):354-360.
    連結:
  4. 5. Brown, C.N. and J.G. Finch, Which mesh for hernia repair? Ann R Coll Surg Engl, 2010. 92(4): 272-8.
    連結:
  5. 6. Smart NJ, Bryan N, Hunt J A, Daniels IR. Porcine dermis implants in soft-tissue reconstruction: current status. Biologics, 2014 Mar 10;8:83-90.
    連結:
  6. 8. Ye X, Li S, Chen X, Zhan Y, Li X Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture. Int J Biol Macromol, 2017. Jan;94(Pt A):492-499.
    連結:
  7. 9. Chaturvedi V, Naskar D, Kinnear BF, Grenik E, Dye DE, Grounds MD, Kundu SC, Coombe DR. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells. J Tissue Eng Regen Med, 2016 Nov 22.
    連結:
  8. 10. Cao, Y. and B. Wang, Biodegradation of silk biomaterials. Int J Mol Sci, 2009. 10(4): 1514-24.
    連結:
  9. 11. Wang Y, Wang X, Shi J, Zhu R, Zhang J, Zhang Z, Ma D, Hou Y, Lin F, Yang J, Mizuno M, A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Sci Rep, 2016. Dec 20, 6:39477
    連結:
  10. 12. Sharma S, Bano S, Ghosh AS, Mandal M, Kim HW, Dey T, Kundu SC, Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine, 2016. 12(5): 1193-204.
    連結:
  11. 13. Teuschl AH, Zipperle J, Huber-Gries C, Kaplan DL, Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements. J Biomed Mater Res A, 2017 Mar, 105(3):687-696.
    連結:
  12. 14. Yu Y, Hu Y, Li X, Liu Y, Li M, Yang J, Sheng W, Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier. Int J Nanomedicine, 2016 Mar 14;11:1013-23.
    連結:
  13. 15. Marelli B, Brenckle MA, Kaplan DL, Omenetto FG, Silk Fibroin as Edible Coating for Perishable Food Preservation. Sci Rep, 2016 May 6;6:25263.
    連結:
  14. 17. Jiang J, Ai C, Zhan Z, Zhang P, Wan F, Chen J, Hao W, Wang Y, Yao J, Shao Z, Chen T, Zhou L, Chen S, Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating. Artif Organs, 2016 Apr, 40(4):385-93
    連結:
  15. 18. Shao W, He J, Han Q, Sang F, Wang Q, Chen L, Cui S, Ding B, A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2016 Oct 1;67:599-610
    連結:
  16. 19. Sommer MR, Vetsch JR, Leemann J, Müller R, Studart AR, Hofmann S, Silk fibroin scaffolds with inverse opal structure for bone tissue engineering. J Biomed Mater Res B Appl Biomater, 2016 Jul 13.
    連結:
  17. 20. Yao, D., H. Liu, and Y. Fan, Silk scaffolds for musculoskeletal tissue engineering. Exp Biol Med (Maywood), 2016 Feb; 241(3): 238-45.
    連結:
  18. 21. Yoo CK, Jeon JY, Kim YJ, Kim SG, Hwang KG, Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration. Maxillofac Plast Reconstr Surg, 2016 Mar 30, 38(1):17.
    連結:
  19. 22. Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, Lee IS, Kong X, Silk fibroin membrane used for guided bone tissue regeneration. Mater Sci Eng C Mater Biol Appl, 2017 Jan 1;70(Pt 1):148-154
    連結:
  20. 23. Hazra S, Nandi S, Naskar D, Guha R, Chowdhury S, Pradhan N, Kundu SC, Konar A, Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration. Sci Rep, 2016 Feb 24;6:21840.
    連結:
  21. 24. Schuh CM, Monforte X, Hackethal J, Redl H, Teuschl AH, Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation. J Mater Sci Mater Med, 2016 Dec;27(12):188
    連結:
  22. 25. Samal J, Weinandy S, Weinandy A, Helmedag M, Rongen L, Hermanns-Sachweh B, Kundu SC, Jockenhoevel S, Co-Culture of Human Endothelial Cells and Foreskin Fibroblasts on 3D Silk-Fibrin Scaffolds Supports Vascularization. Macromol Biosci, 2015 Oct;15(10):1433-46.
    連結:
  23. 26. Wendt H1, Hillmer A, Reimers K, Kuhbier JW, Schäfer-Nolte F, Allmeling C, Kasper C, Vogt PM, Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One, 2011. 6(7): e21833.
    連結:
  24. 27. Floren M, Migliaresi C, Motta A., Processing Techniques and Applications of Silk Hydrogels in Bioengineering. J Funct Biomater, 2016 Sep 14;7(3).
    連結:
  25. 28. Konar S, Guha R, Kundu B, Nandi S, Ghosh TK, Kundu SC, Konar A, Hazra S, Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion. Hernia, 2017 Feb;21(1):125-137.
    連結:
  26. 29. Yan LP, Silva-Correia J, Ribeiro VP, Miranda-Gonçalves V, Correia C, da Silva Morais A, Sousa RA, Reis RM, Oliveira AL, Oliveira JM, Reis RL, Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Sci Rep, 2016 Aug 3;6:31037.
    連結:
  27. 30. Dhyani V, Singh N, Controlling the cell adhesion property of silk films by graft polymerization. ACS Appl Mater Interfaces, 2014 Apr 9;6(7):5005-11.
    連結:
  28. 31. Kambe Y, Kojima K, Tamada Y, Tomita N, Kameda T, Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor. J Biomed Mater Res A, 2016 Jan;104(1):82-93.
    連結:
  29. 32. Silva SS, Oliveira NM, Oliveira MB, da Costa DP, Naskar D, Mano JF, Kundu SC, Reis RL, Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomater, 2016 Mar 1;32:178-89.
    連結:
  30. 33. Kundu B, Rajkhowa R, Kundu SC, Wang X, Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev, 2013. 65(4): p. 457-70.
    連結:
  31. 34. Chouhan D, Chakraborty B, Nandi SK, Mandal BB, Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater, 2016 Jan 15, 48:157-174.
    連結:
  32. 35. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH, Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomater, 2016 Jul 15, 39:146-55.
    連結:
  33. 36. Gobin AS1, Butler CE, Mathur AB, Repair and Regeneration of the Abdominal Wall Musculofascial Defect Using Silk Fibroin Chitosan Blend. Tissue Eng. 2006 Dec, 12(12):3383-94.
    連結:
  34. 37. Clemens MW1, Downey S1, Agullo F1, Lehfeldt MR1, Kind GM1, Palladino H1, Marshall D1, Jewell ML1, Mathur AB1, Bengtson BP, Clinical application of a silk fibroin protein biologic scaffold for abdominal wall fascial reinforcement. Plast Reconstr Surg Glob Open, 2014 Dec 5;2(11):e246.
    連結:
  35. 38. Chang Y, Sun X, Li Q, Ding X, Liu H, Wang J, Silk fibroin scaffold as a potential choice for female pelvic reconstruction: A study on the biocompatibility in abdominal wall, pelvic, and vagina. Microsc Res Tech, 2017 Mar, 80(3):291-297.
    連結:
  36. 39. Alessandrino A, Marelli B, Arosio C, Fare S, Tanzi CM, Freddi G, Electrospun Silk Fibroin Mats for Tissue Engineering. Engineering in Life Sciences, 2008. 8(3): 219-225.
    連結:
  37. 40. Mandal BB., Kundu SC, Biospinning by silkworms: silk fiber matrices for tissue engineering applications. Acta Biomater, 2010 Feb, 6(2):360-71.
    連結:
  38. 41. Gimble, J.M., Adipose tissue-derived therapeutics. Expert Opin Biol Ther, 2003. 3(5): 705-13.
    連結:
  39. 42. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z., Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct. 2008 Aug, 26(6):664-75.
    連結:
  40. 43. Kim WS, Park SH, Ahn SJ, Kim HK, Park JS, Lee GY, Kim KJ, Whang KK, Kang SH, Park BS, Sung JH, Whitening Effect of Adipose-Derived Stem Cells: A Critical Role of TGF-beta 1. Biol. Pharm. Bull, 2008 Apr, 31(4):606-10.
    連結:
  41. 44. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW, Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. J Tissue Eng., 2010 Nov 7, 2010:218142.
    連結:
  42. 45. Ulery BD, Nair LS, Laurencin CT, Biomedical Applications of Biodegradable Polymers. J Polym Sci B Polym Phys, 2011. 49(12): 832-864.
    連結:
  43. 46. Li X, Kruger JA, Jor JW, Wong V, Dietz HP, Nash MP, Nielsen PM, Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. J Mech Behav Biomed Mater, 2014 Sep, 37:48-55.
    連結:
  44. 47. Malay AD, Sato R, Yazawa K, Watanabe H, Ifuku N, Masunaga H, Hikima T, Guan J, Mandal BB, Damrongsakkul S, Numata K, Relationships between physical properties and sequence in silkworm silks. Sci Rep, 2016 Jun 9, 6:27573.
    連結:
  45. 48. Morin A, Alam P, Comparing the properties of Bombyx mori silk cocoons against sericin-fibroin regummed biocomposite sheets. Mater Sci Eng C Mater Biol Appl, 2016 Aug 1, 65:215-20.
    連結:
  46. 49. Partlow BP, Tabatabai AP, Leisk GG, Cebe P, Blair DL, Kaplan DL, Silk Fibroin Degradation Related to Rheological and Mechanical Properties. Macromol Biosci, 2016 May, 16(5):666-75.
    連結:
  47. 50. Suzuki S, Chirila TV, Edwards GA, Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomaterials. Prog Biomater, 2016 Dec;5(3-4):193-198.
    連結:
  48. 51. Yerra A, Mysarla DK, Siripurapu P, Jha A, Valluri SV, Mamillapalli A, Effect of polyamines on mechanical and structural properties of Bombyx mori silk. Biopolymers, 2017 Jan;107(1):20-27.
    連結:
  49. 52. Guillaume O, Park J, Monforte X, Gruber-Blum S, Redl H, Petter-Puchner A, Teuschl AH, Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair. J Mater Sci Mater Med. 2016 Feb, 27(2):37
    連結:
  50. 53. Haupt J, García-López JM, Chope K, Use of a novel silk mesh for ventral midline hernioplasty in a mare. BMC Vet Res, 2015 Mar 13;11:58. .
    連結:
  51. 54. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y, Adipose Tissue-Derived Stromal Cells as a Novel Option for Regenerative Cell Therapy. J Atheroscler Thromb. 2006 Apr, 13(2):77-81
    連結:
  52. 55. Park BS1, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, Kim WS, Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg, 2008 Oct, 34(10):1323-6.
    連結:
  53. 56. Jeon YJ, Han SH, Lee YW, Lee M, Yang KH, Kim HM, Dexamethasone inhibits IL-1beta gene expression in LPS-stimulated RAW 264.7 cells by blocking NF-kappa B/Rel and AP-1 activation. immunopharmacology, 2000 Jul 20, 48(2):173-83.
    連結:
  54. 57. Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, Mori I, Yoshida T, Yokochi T, Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys Res Commun, 2007 Aug 24, 360(2):346-51.
    連結:
  55. 58. Cordeiro JV, Jacinto A, The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat Rev Mol Cell Biol, 2013 Apr, 14(4):249-62.
    連結:
  56. 1. Lomanto D, Cheah WK, Faylona JM, Huang CS, Lohsiriwat D, Maleachi A, Yang GP, Li MK, Tumtavitikul S, Sharma A, Hartung RU, Choi YB, Sutedja B. Inguinal hernia repair: toward Asian guidelines. Asian J Endosc Surg, 2015 Feb;8(1):16-23.
  57. 7. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG, Fine organization of bombyx mori fibroin heavy gene. Nucleic Acids Res. 2000 Jun 15;28(12):2413-9.
  58. 16. Ferri AL, Ceserani V, Greppi N, Tosetti V, Schiariti M, Alessandri G, Rebulla P, Parati E, Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells cultured on a scaffold made of silk fibroin and cord blood platelet gel. Blood Transfus, 2016 May;14(2):206-11.