题名

共振腔受軸向負載下結構彈塑性變形之調整高頻電磁場共振頻率之研究

并列篇名

Resonance Frequency Shift of Electromagnetic Field of the Resonance-Frequency Cavity as Being Elastoplastic Structure Deformed by Axial Loading

作者

林子淵

关键词

共振腔體 ; 共振頻率 ; 彈塑性結構變形

期刊名称

清華大學動力機械工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

葉孟考

内容语文

繁體中文

中文摘要

本文分析共振腔體受到軸向負載後,對其結構變形與內部共振頻率變化進行探討。先對圓柱形腔體模擬,比較其結果與理論解,及各材料常數對共振頻率的影響,確認分析結果可行後再將流程用至共振基頻約為1.5 GHz的腔體模型,並得到調整共振頻率範圍之軸向負載。文中使用有限單元軟體ANSYS進行結構及電磁場跨領域分析,由於分析所需之基頻共振模態為TM010軸對稱形式,使用四分之一模型並配合適當邊界條件,以及給予材料和內部電磁場材料參數,即可求解出高頻電磁場共振頻率。分析過程為模擬共振腔體調頻步驟,用軸向位移使結構發生彈塑性變形,即可對內部共振頻率產生調整的作用;由數值結果得知圓柱形腔體與1.5 GHz腔體受到拉伸位移,高頻共振頻率皆升高。1.5 GHz腔體調整共振頻率分析中討論厚度及各種負載條件下與高頻共振頻率的相關性,並與實驗結果比較。由結果確定主導高頻共振頻率變化的腔體半徑變化量增大時,其飄移量更敏感。

英文摘要

The structure deformation and resonance frequency variation of a cavity under cyclic axial loading were not only computed in this study by the finite element software ANSYS but also tested with a copper cavity. The resonance frequency of TM010 mode was chosen to study the effects of structure deformation. Two types of thin-shell cavities were investigated: the circular cylindrical cavity and the bell-shape cavity of 1.5 GHz. A process to link the computations on structure deformation and electromagnetic fields was established, while proper boundary conditions and material properties were assigned in corresponding steps to obtain the accurate results. Elastoplasticity of dynamic hardening model was assigned for the structure computation, thus the actual frequency-tuning process is successfully simulated. Effects of the elastoplastic material properties, various thickness and loading condition on the resonance frequency are thus able to be studied. The computed results of the 1.5 GHz cavity were compared with the experiment results.

主题分类 工學院 > 動力機械工程學系
工程學 > 機械工程
参考文献
  1. 2.N. Akdogan, Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors, Ruhr-Universitat Bochum, Germany, 2008.
    連結:
  2. 4.H. Vogel, “Current industrial SRF capabilities and future plans,” Nuclear Instruments and Methods in Physics Research A, Vol 557, pp. 51-57, 2006.
    連結:
  3. 5.http://www.nsrrc.org.tw/, retrieved on September 30, 2015.
    連結:
  4. 9.M. Meidlinger, T. L. Grimm and W. Hartung, “Design of Half-Reentrant SRF Cavities,” Physica C, Vol. 441, pp. 155-158, 2006.
    連結:
  5. 11.M. G. Rao and P. Kneisel, “Thermal and Mechanical Properties of Electron Beam Welded and Heated-Treated Niobium for TESLA,” Continuous Electron Beam Accelerator Facility Newport News, pp. 1-7, Virginia, USA, 1993.
    連結:
  6. 13.T. Furuya, K. Akai, K. Asano, E. Ezura, K. Hara, “A prototype module of a superconducting damped cavity for KEKB,” Proc. EPAC96, pp. 2121-2123, 1996.
    連結:
  7. 14.Ch. Wang, L. H. Chang, M. C. Lin, M. S. Yeh, T. T. Yang, F. T. Chung, M. H. Tsai, M. H. Chang, Y. H. Lin, C. H. Lo, T. C. Yu, L. J. Chen, M. C. Lee, F. Z. Hsiao, G. H. Luo, C. T. Chen, “Design Features and Construction Progress Of 500-MHZ RF Systems For The Taiwan Photon Source ,” Proceedings of 2011 Particle Accelerator Conference, pp. 2513-2515, New York, USA.
    連結:
  8. 20.E. Belomestnykh, J. Sears, “Superconducting RF Cavities and Cryogenics for the CESR upgrade,” Cryogenic Materials Conference, Canada
    連結:
  9. 21.S. Belomestnykh, “The High Luminosity Performance of CESR with the New Generation Superconducting Cavity,” Particle Accelerator Conference, Vol. 1, pp.272-276, New York, 1999.
    連結:
  10. 24.C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August, 2000.
    連結:
  11. 25.T. S. Byun, S. H. Kim, J. Mammosser, “Low-temperature Mechanical Properties of Superconducting Radio Frequency Cavity Material,” Journal of Nuclear Material, Vol. 392, pp. 420-426, 2009.
    連結:
  12. 26.R. P, Walsh, R. R. Mitchell, V. T. Toplosky, R. C. GentZlinger, “Low-temperature tensile and fracture toughness properties of SCRF cavity structural material,” 9th Workshop on RF Superconductivity, USA, 1999.
    連結:
  13. 29.E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K. M. Schirm, M. Taufer, W. Weingarten, “Analysis and results of the industrial production of the superconducting Nb/Cu cavities for the LEP 2 project,” Proceedings of the Particle Accelerator Conference, Vol. 3, pp. 1509-1511, Dallas, 1995.
    連結:
  14. 39.J. Mammosser, P. Kneisel, J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” The Institute of Electrical and Electronics Engineers, Vol. 2, pp. 947-949, 1993.
    連結:
  15. 44.M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh, M. J. Huang, “A Coupled-field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cavity,” Proceedings of EPAC, Paris, pp. 2259-2261, 2002.
    連結:
  16. 45.M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, P. J. Chou, “A Coupled-field Analysis on RF Cavity,” Particle Accelerator Conference, Chicago, USA, 2001.
    連結:
  17. 46.M. K. Yeh, B.Y. Chen, M. C. Lin, “Analysis and Experiment of Deformation and Limit Load of Thin-Walled Shell Cavities,” Advanced Materials Research, Vols. 33-37, pp. 1207-1212, 2008.
    連結:
  18. 49.郭泓毅,超導共振腔之結構變形對內部電磁場特性之影響,國立清華大學碩士論文,台灣新竹,2013。
    連結:
  19. 50.呂盿儒,超導共振腔中央直線段長度對電磁場特性之影響,國立清華大學碩士論文,台灣新竹,2014。
    連結:
  20. 51.許周叡,圓柱形共振腔在軸向負載下之彈塑性變形對其高頻電磁場共振頻率之影響研究,台灣新竹,2015。
    連結:
  21. 53.A. V. Kudrin, E. Y. Petrov, “Cylindrical Electromagnetic Waves in a Nonlinear Nondispersive Medium : Exact solutions of the Maxwell equations,” Journal of Experimental and Theoretical Physics, Vol. 110, pp. 537-548, 2010.
    連結:
  22. 56.R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed, Wiley, Danvers, 2002.
    連結:
  23. 57.L. J. Segerlind, Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.
    連結:
  24. 58.ASTM E8/E8M-11, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, 2013.
    連結:
  25. 1.F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, H. C. Pollock, “Radiation from Electrons in a Synchrotron,” Physical Review, Vol. 71, pp. 829-830, 1947.
  26. 3.C. C. Yang, “HOM Damping in RF Cavities of Storage Ring,” Ph.D. Dissertation, National Tsing Hua University, 2002.
  27. 6.C. Wang, L. H. Chang, M. C. Lin, F. T. Chung, S. S. Chang, T. T. Yang, M. H. Tsai, “Operational Experience of the Superconducting RF Module At TLS,” Proceedings of the 12th International Workshop on RF Superconductivity, Ithaca, New York, USA, 2005.
  28. 7.H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators, WILEY, New York, 1998.
  29. 8.V. D. Shemeliny, G. H. Hoffstaetter, “First-Principle Approach for Optimization Cavity Shape for High Gradient and Low Loss,” Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012.
  30. 10.T. P. Wangler, RF Linear Accelerator, WILEY, Weinheim, 2008.
  31. 12.H. Padamsee, P. Barnes, C. Chen, W. Hartung, J. Kirchgessner, D. Moffat, R. Ringrose, D. Rubin, Y. Samed, D. Saraniti, J. Sears, Q. S. Shu, M. Tigner, “Design challenges for high-current storage rings,” Proceedings of the Fifth Workshop on RF Superconductivity, Vol. 40, pp. 17-41, 1992.
  32. 15.R. Valdiviez, D. Schrage, F. Martinez, W. Clark, “The Use of Dispersion Strengthened Copper in Accelerator Designs,” XX International Linac Conference, Monterey, California, 2000.
  33. 16.J. Sekutowicz, K. Ko, L. Ge, L. Lee, Z. Li, C. Ng, G. Schussman, L. Xiao, I. Gonin, T. Khabibouline, N. Solyak, Y. Morozumi, K. Saito, P. Kneisel, “Design of A Low Loss SRF Cavity for The ILC,” Proceedings of 2005 Particle Accelerator Conference, pp. 3342-3345, Knoxville, Tennessee, 2005.
  34. 17.K. Ishio, K. Kikuchi, M. Mizumoto, A. Naito, “Fracture Toughness and Mechanical Properties of Pure Niobium and its Welded Joints of Superconducting Cavity at 4K,” 9th Workshop on RF Superconductivity, pp. 319-323, New Mexico, USA, 1999.
  35. 18.M. F. Thomas, Cryogenic Engineering, Marcel Dekker Inc, pp. 181-214, 1997.
  36. 19.羅國輝、王兆恩、張隆海與林明泉,“同步輻射儲存環之低溫超導共振腔簡介,” 輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
  37. 22.S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF System Upgrade for Short Bunch Operation of CESR,” Proceedings of the 2001 Particle Accelerator Conference, pp.1062-1064, Chicago, 2001.
  38. 23.M. G. Rao, P. Kneisel, “High RRR material properties of niobium and specifications for fabrication of superconducting cavities,” Report of Fermilab, 2006.
  39. 27.M. C. Lin, C. Wang, Takaaki Furuya, T. T. Yang, M. S. Yeh, L. H. Chang, C. K. Liu, F. T. Chung, M. H. Tsai, M. H. Chang, Y. H. Lin, C. H. Lo, T. C. Yu, L. J. Chen, “Effects of Material Properties on the Elastoplastic Buckling of an SRF Cavity Under External Pressure,” IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, pp. 2605-2608, June, 2011.
  40. 28.J. Knobloch, W. Hartung, H. Padamsee, “Enhanced Susceptibility of Nb Cavity Equator Welds to the Hydrogen Related Q-virus,” 8th Workshop on RF Superconductivity, Padova, Italy, 1998.
  41. 30.K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi, Y. Yamazaki, “Feasiblity Study of Nb/Cu Clad Superconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June 1999.
  42. 31.S. Bousson, M. Fouaidy, H. Gassot, T. Junquera, J-C. Le Scornet, J. Lesrel, “SRF Cavity Stiffening By Thermal Spraying,” Proceedings of EPAC 2000, pp. 2043-2045, Vienna, Austria.
  43. 32.G. Myneni, P. Kneisel, “High RRR Niobium Material Studies,” Report of Jefferson Lab, 2003.
  44. 33.Y. C. Tsai, “Studies of high-order-mode suppersion in storage ring RF cavities,” Ph. D. Dissertation, National Tsing Hua University, pp. 1997.
  45. 34.H. Padamsee, “Review of Experience with HOM Damped Cavities,” Report of Nuclear Studies Laboratory, Cornell University, Ithaca, New York, 1998.
  46. 35.陳家逸,高頻共振腔高次模抑制方法之研究, 國立清華大學碩士論文, 台灣新竹,2003。
  47. 36.J. Kirchgessner, S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of Nuclear Studies Laboratory, Cornell University, pp. 1-4, 1997.
  48. 37.J. Kirchgessner, “The Use of Super Conducting RF for High Current Applications,” Particle Accelerators, Vol. 46, pp. 151-162, 1994.
  49. 38.M. C. Lin, Ch. Wang, T. T. Yang, M. H. Tsai, L. H. Chang, G. H. Luo, M. S. Yeh, F. T. Chung, “Elastoplastic Buckling on the Bent Waveguide of CESR-Type SRF Cavity,” IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 1284-1284, June, 2007.
  50. 40.G. H. Luo, L. H. Chang, C. C. Kuo, M. C. Lin, R. Sah, T. T. Yang, Ch. Wang, “The Superconducting RF Cavity and 500mA Beam Current Upgrade Project at Taiwan Light Source,” Proceeding of European Particle Accelerator Conference, pp. 654-656, Vienna, Austria, 2000.
  51. 41.J. Kirchgessner, “Thoughts on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat,” Report of Nuclear Studies Laboratory, pp. 2-5, Cornell University, Ithaca, New York, 1994.
  52. 42.E. Zaplatin, C. Compton, W. Hartung, M. J. Johnson, F. Marti, J. Oliva, J. Popielarski, R. C. York, “Structural Analysis of MSU Quarter-waver Resonators,” Proceedings of Superconducting Radio Frequency, pp. 560-563, Germany, 2009.
  53. 43.E. Zaplatin, “FZJ SC Cavity Coupled Analysis,” Proceedings of the 12th Workshop on RF Superconductivity, pp.342-346, Germany, 2005.
  54. 47.陳伯毅,低溫超導共振腔之結構變形對內建電磁場特性之影響,國立清華大學碩士論文,台灣新竹,2002。
  55. 48.鍾明忠,共振腔結構受端面位移影響之模態分析與實驗,國立清華大學碩士論文,台灣新竹,2004。
  56. 52.D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, New York, 1989.
  57. 54.J. Chakrabarty, Theory of Plasticity, Butterworth-Heinemann, UK, 2012.
  58. 55.ANSYS Release 12.1, ANSYS, Inc., PA, 2009.