参考文献
|
-
[2] M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?," Chemical reviews, vol. 104, pp. 4245-4270, 2004.
連結:
-
[4] V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, "A review on air cathodes for zinc-air fuel cells," Journal of Power Sources, vol. 195, pp. 1271-1291, 3/1/ 2010.
連結:
-
[7] Y. N. Jo, H. S. Kim, K. Prasanna, P. R. Ilango, W. J. Lee, S. W. Eom, et al., "Effect of Additives on Electrochemical and Corrosion Behavior of Gel Type Electrodes for Zn-Air System," Industrial & Engineering Chemistry Research, vol. 53, pp. 17370-17375, 2014.
連結:
-
[9] R. Shivkumar, G. P. Kalaignan, and T. Vasudevan, "Effect of additives on zinc electrodes in alkaline battery systems," Journal of power sources, vol. 55, pp. 53-62, 1995.
連結:
-
[10] C. W. Lee, K. Sathiyanarayanan, S. W. Eom, H. S. Kim, and M. S. Yun, "Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells," Journal of power sources, vol. 160, pp. 161-164, 2006.
連結:
-
[11] Y. Tang, L. Lu, H. W. Roesky, L. Wang, and B. Huang, "The effect of zinc on the aluminum anode of the aluminum-air battery," Journal of Power Sources, vol. 138, pp. 313-318, 2004.
連結:
-
[12] L. Jörissen, "Bifunctional oxygen/air electrodes," Journal of Power Sources, vol. 155, pp. 23-32, 2006.
連結:
-
[13] J. Goldstein and A. Tseung, "A joint pseudo-splitting/peroxide mechanism for oxygen reduction at fuel cell cathodes," 1969.
連結:
-
[14] W. Sunu and D. Bennion, "Transient and Failure Analyses of the Porous Zinc Electrode I. Theoretical," Journal of The Electrochemical Society, vol. 127, pp. 2007-2016, 1980.
連結:
-
[15] M. S. El-Deab and T. Ohsaka, "Electrosynthesis of Single-Crystalline MnOOH Nanorods onto Pt Electrodes Electrocatalytic Activity toward Reduction of Oxygen," Journal of The Electrochemical Society, vol. 155, pp. D14-D21, 2008.
連結:
-
[16] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles," Science, vol. 334, pp. 1383-1385, 2011.
連結:
-
[17] D. U. Lee, B. J. Kim, and Z. Chen, "One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst," Journal of Materials Chemistry A, vol. 1, pp. 4754-4762, 2013.
連結:
-
[19] B. E. Conway and T. Liu, "Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evaluation of behavior of surface intermediate states at the oxide film," Langmuir, vol. 6, pp. 268-276, 1990.
連結:
-
[20] S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, et al., "Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability," Catalysis Today, vol. 262, pp. 170-180, 2016.
連結:
-
[21] R. Cao, J. S. Lee, M. Liu, and J. Cho, "Recent Progress in Non‐Precious Catalysts for Metal-Air Batteries," Advanced Energy Materials, vol. 2, pp. 816-829, 2012.
連結:
-
[22] S. Trasatti, "Physical electrochemistry of ceramic oxides," Electrochimica Acta, vol. 36, pp. 225-241, 1991.
連結:
-
[23] X. Ge, Y. Liu, F. T. Goh, T. A. Hor, Y. Zong, P. Xiao, et al., "Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution," ACS applied materials & interfaces, vol. 6, pp. 12684-12691, 2014.
連結:
-
[24] D. U. Lee, H. W. Park, M. G. Park, V. Ismayilov, and Z. Chen, "Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined Carbon Nanotubes for Rechargeable Zinc-Air Battery Applications," ACS applied materials & interfaces, vol. 7, pp. 902-910, 2014.
連結:
-
[25] Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, et al., "In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction," Journal of the American Chemical Society, vol. 135, pp. 8525-8534, 2013.
連結:
-
[26] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, et al., "Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction," Nature materials, vol. 10, pp. 780-786, 2011.
連結:
-
[27] Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, et al., "Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts," Journal of the American Chemical Society, vol. 134, pp. 3517-3523, 2012.
連結:
-
[28] F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, and J. Chen, "Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts," Nature Chemistry, vol. 3, pp. 79-84, 2011.
連結:
-
[29] V. Nikolova, P. Iliev, K. Petrov, T. Vitanov, E. Zhecheva, R. Stoyanova, et al., "Electrocatalysts for bifunctional oxygen/air electrodes," Journal of Power Sources, vol. 185, pp. 727-733, 2008.
連結:
-
[30] C. K. Lee, K. A. Striebel, F. R. McLarnon, and E. J. Cairns, "Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes," Journal of The Electrochemical Society, vol. 144, pp. 3801-3806, 1997.
連結:
-
[31] N.-L. Wu, W.-R. Liu, and S.-J. Su, "Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode," Electrochimica Acta, vol. 48, pp. 1567-1571, 2003.
連結:
-
[32] S. Malkhandi, B. Yang, A. Manohar, A. Manivannan, G. S. Prakash, and S. Narayanan, "Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes," The journal of physical chemistry letters, vol. 3, pp. 967-972, 2012.
連結:
-
[33] Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, "Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application," Nano letters, vol. 12, pp. 1946-1952, 2012.
連結:
-
[34] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, and Z. Chen, "Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery," Electrochimica Acta, vol. 69, pp. 295-300, 2012.
連結:
-
[35] G. Du, X. Liu, Y. Zong, T. A. Hor, A. Yu, and Z. Liu, "Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries," Nanoscale, vol. 5, pp. 4657-4661, 2013.
連結:
-
[36] K.-N. Jung, J.-H. Jung, W. B. Im, S. Yoon, K.-H. Shin, and J.-W. Lee, "Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries," ACS applied materials & interfaces, vol. 5, pp. 9902-9907, 2013.
連結:
-
[38] M. Prabu, P. Ramakrishnan, and S. Shanmugam, "CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery," Electrochemistry Communications, vol. 41, pp. 59-63, 2014.
連結:
-
[39] M. Prabu, K. Ketpang, and S. Shanmugam, "Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries," Nanoscale, vol. 6, pp. 3173-3181, 2014.
連結:
-
[41] M. Srivastava, M. E. Uddin, J. Singh, N. H. Kim, and J. H. Lee, "Preparation and characterization of self-assembled layer by layer NiCo2O4-reduced graphene oxide nanocomposite with improved electrocatalytic properties," Journal of Alloys and Compounds, vol. 590, pp. 266-276, 2014.
連結:
-
[42] Y.-z. Su, Q.-z. Xu, Q.-s. Zhong, S.-t. Shi, C.-j. Zhang, and C.-w. Xu, "NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter," Journal of Alloys and Compounds, vol. 617, pp. 115-119, 2014.
連結:
-
[43] H. Zhang, H. Qiao, H. Wang, N. Zhou, J. Chen, Y. Tang, et al., "Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery," Nanoscale, vol. 6, pp. 10235-10242, 2014.
連結:
-
[44] B. Issa, I. M. Obaidat, B. A. Albiss, and Y. Haik, "Magnetic nanoparticles: surface effects and properties related to biomedicine applications," International journal of molecular sciences, vol. 14, pp. 21266-21305, 2013.
連結:
-
[45] S. Jasem and A. Tseung, "A Potentiostatic Pulse Study of Oxygen Evolution on Teflon‐Bonded Nickel-Cobalt Oxide Electrodes," Journal of The Electrochemical Society, vol. 126, pp. 1353-1360, 1979.
連結:
-
[49] R. J. Hill, J. R. Craig, and G. Gibbs, "Systematics of the spinel structure type," Physics and Chemistry of Minerals, vol. 4, pp. 317-339, 1979.
連結:
-
[51] M. Lenglet, R. Guillamet, J. Dürr, D. Gryffroy, and R. E. Vandenberghe, "Electronic structure of NiCo2O4 by XANES, EXAFS and 61Ni Mössbauer studies," Solid State Communications, vol. 74, pp. 1035-1039, 1990/06/01 1990.
連結:
-
[52] R. Ning, J. Tian, A. M. Asiri, A. H. Qusti, A. O. Al-Youbi, and X. Sun, "Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction," Langmuir, vol. 29, pp. 13146-13151, 2013.
連結:
-
[53] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, and L. Guo, "Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction," Scientific reports, vol. 3, 2013.
連結:
-
[54] Z. Chen, M. Waje, W. Li, and Y. Yan, "Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions," Angewandte Chemie, vol. 119, pp. 4138-4141, 2007.
連結:
-
[56] S. J. Lee, S. I. Pyun, S. K. Lee, and S. J. L. Kang, "Fundamentals of Rotating Disc and Ring-Disc Electrode Techniques and their Applications to Study of the Oxygen Reduction Mechanism at Pt/C Electrode for Fuel Cells," Israel Journal of Chemistry, vol. 48, pp. 215-228, 2008.
連結:
-
[57] C. Song and J. Zhang, "Electrocatalytic oxygen reduction reaction in PEM fuel cell electrocatalysts and catalyst layers," ed: Springer, 2008, pp. 89-134.
連結:
-
[58] Y. S. Lee, C. C. Hu, and T. C. Wen, "Oxygen Evolution on Co-Cu-Zn Ternary Spinel Oxide-Coated Electrodes in Alkaline Solution Integration of Statistical, Electrochemical, and Textural Approaches," Journal of The Electrochemical Society, vol. 143, pp. 1218-1225, 1996.
連結:
-
[59] J. Wang, T. Qiu, X. Chen, Y. Lu, and W. Yang, "Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium," Journal of Power Sources, vol. 268, pp. 341-348, 2014.
連結:
-
[60] R. J. Toh, A. Y. S. Eng, Z. Sofer, D. Sedmidubsky, and M. Pumera, "Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction," ChemElectroChem, vol. 2, pp. 982-987, 2015.
連結:
-
[61] J. Marco, J. Gancedo, M. Gracia, J. Gautier, E. Rı́, and F. Berry, "Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study," Journal of Solid State Chemistry, vol. 153, pp. 74-81, 2000.
連結:
-
[62] R. Ding, L. Qi, M. Jia, and H. Wang, "Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation," Journal of Power Sources, vol. 251, pp. 287-295, 2014.
連結:
-
[64] L. Qiu, Y. Wang, D. Pang, F. Ouyang, C. Zhang, and G. Cao, "Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature," Catalysts, vol. 6, p. 9, 2016.
連結:
-
[65] L. Fu, Y. Lu, Z. Liu, and R. Zhu, "Influence of the metal sites of MNC (M= Co, Fe, Mn) catalysts derived from metalloporphyrins in ethylbenzene oxidation," Chinese Journal of Catalysis, vol. 37, pp. 398-404, 2016.
連結:
-
[66] T. Yamashita and P. Hayes, "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials," Applied Surface Science, vol. 254, pp. 2441-2449, 2008.
連結:
-
[67] A. Grosvenor, B. Kobe, M. Biesinger, and N. McIntyre, "Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds," Surface and Interface Analysis, vol. 36, pp. 1564-1574, 2004.
連結:
-
[68] Y. Zhang, T. Han, L. Zhu, J. Fang, J. Xu, P. Xu, et al., "Pt35Cu65 nanoarchitecture: a highly durable and effective electrocatalyst towards methanol oxidation," Nanotechnology, vol. 26, p. 135706, 2015.
連結:
-
[69] F. Jing, Y. Zhang, S. Luo, W. Chu, H. Zhang, and X. Shi, "Catalytic synthesis of 2-methylpyrazine over Cr-promoted copper based catalyst via a cyclo-dehydrogenation reaction route," Journal of chemical sciences, vol. 122, pp. 621-630, 2010.
連結:
-
[70] H. Han, G. Ding, T. Wu, D. Yang, T. Jiang, and B. Han, "Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde," Molecules, vol. 20, pp. 12686-12697, 2015.
連結:
-
[71] Z.-Q. Liu, Q.-Z. Xu, J.-Y. Wang, N. Li, S.-H. Guo, Y.-Z. Su, et al., "Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction," international journal of hydrogen energy, vol. 38, pp. 6657-6662, 2013.
連結:
-
[72] C. Yuan, J. Li, L. Hou, L. Yang, L. Shen, and X. Zhang, "Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors," Journal of Materials Chemistry, vol. 22, pp. 16084-16090, 2012.
連結:
-
[73] M. El Baydi, S. K. Tiwari, R. N. Singh, J.-L. Rehspringer, P. Chartier, J. F. Koenig, et al., "High Specific Surface Area Nickel Mixed Oxide Powders LaNiO3 (Perovskite) and NiCo2O4 (Spinel) via Sol-Gel Type Routes for Oxygen Electrocatalysis in Alkaline Media," Journal of Solid State Chemistry, vol. 116, pp. 157-169, 1995.
連結:
-
[74] J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, and Y.-X. Tong, "Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications," Journal of Materials Chemistry, vol. 22, pp. 5656-5665, 2012.
連結:
-
[75] B. Lu, D. Cao, P. Wang, G. Wang, and Y. Gao, "Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes," International Journal of Hydrogen Energy, vol. 36, pp. 72-78, 2011.
連結:
-
[76] T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, and C.-C. Hu, "A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process," Advanced materials, vol. 22, p. 347, 2010.
連結:
-
[77] D. Ghosh, S. Giri, and C. K. Das, "Hydrothermal synthesis of platelet β-Co(OH)2 and Co3O4: Smart electrode material for energy storage application," Environmental Progress & Sustainable Energy, vol. 33, pp. 1059-1064, 2014.
連結:
-
[78] A. Angelo, E. Gonzalez, and L. Avaca, "Mechanistic studies of the oxygen reactions on NiCo2O4 spinel and the hydrogen evolution reaction on amorphous Ni-Co sulphide," International journal of hydrogen energy, vol. 16, pp. 1-7, 1991.
連結:
-
[79] T. Ferreira, J. Waerenborgh, M. Mendonça, M. Nunes, and F. Costa, "Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method," Solid State Sciences, vol. 5, pp. 383-392, 2003.
連結:
-
[80] S. G. Mohamed, C.-J. Chen, C. K. Chen, S.-F. Hu, and R.-S. Liu, "High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4 Nanoflakes Electrodes," ACS applied materials & interfaces, vol. 6, pp. 22701-22708, 2014.
連結:
-
[81] Y. Sharma, N. Sharma, G. S. Rao, and B. Chowdari, "Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries," Solid State Ionics, vol. 179, pp. 587-597, 2008.
連結:
-
[82] Y. Sun, S. Gao, F. Lei, J. Liu, L. Liang, and Y. Xie, "Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts," Chem. Sci., vol. 5, pp. 3976-3982, 2014.
連結:
-
[83] Y. Cai, C. Ma, Y. Zhu, J. X. Wang, and R. R. Adzic, "Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal," Langmuir, vol. 27, pp. 8540-8547, 2011.
連結:
-
[84] C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, and J. Chen, "Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis," Nature communications, vol. 6, 2015.
連結:
-
[86] D. U. Lee, M. G. Park, H. W. Park, M. H. Seo, X. Wang, and Z. Chen, "Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries," ChemSusChem, vol. 8, pp. 3129-3138, 2015.
連結:
-
[87] M. Prabu, P. Ramakrishnan, H. Nara, T. Momma, T. Osaka, and S. Shanmugam, "Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions," ACS applied materials & interfaces, vol. 6, pp. 16545-16555, 2014.
連結:
-
[88] X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, and J. Cho, "Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries," Angewandte Chemie International Edition, vol. 54, pp. 9654-9658, 2015.
連結:
-
[89] Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, et al., "Advanced zinc-air batteries based on high-performance hybrid electrocatalysts," Nature communications, vol. 4, p. 1805, 2013.
連結:
-
[90] J. Armijo, "The kinetics and mechanism of solid-state spinel formation-A review and critique," Oxidation of metals, vol. 1, pp. 171-198, 1969.
連結:
-
[91] J. Lu, C. Zhan, T. Wu, J. Wen, Y. Lei, A. J. Kropf, et al., "Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach," Nature communications, vol. 5, 2014.
連結:
-
[92] S. W. Price, S. J. Thompson, X. Li, S. F. Gorman, D. Pletcher, A. E. Russell, et al., "The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries," Journal of Power Sources, vol. 259, pp. 43-49, 2014.
連結:
-
[93] L. Zhou, D. Zhao, and X. W. Lou, "Double‐Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries," Advanced materials, vol. 24, pp. 745-748, 2012.
連結:
-
[94] P. Lavela, J. Tirado, and C. Vidal-Abarca, "Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells," Electrochimica Acta, vol. 52, pp. 7986-7995, 2007.
連結:
-
[95] B. Zheng, J. Wang, F.-B. Wang, and X.-H. Xia, "Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction," Journal of Materials Chemistry A, vol. 2, pp. 9079-9084, 2014.
連結:
-
[1] 萬其超, "電化學之原理與應用," 徐氏基金會,台灣台北, 1996.
-
[3] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, and W. Wilcke, "Lithium-air battery: promise and challenges," The Journal of Physical Chemistry Letters, vol. 1, pp. 2193-2203, 2010.
-
[5] 曹玉佳, "鋅空氣燃料電池陰極之奈米化結構研發," 國立中正大學碩士論文, 2007.
-
[6] D. Linden, "Handbook of Batteries," McGraw-Hill Pub. Co., NY, 1994.
-
[8] S. Müller, F. Holzer, and O. Haas, "Optimized zinc electrode for the rechargeable zinc-air battery," Journal of applied electrochemistry, vol. 28, pp. 895-898, 1998.
-
[18] 李育書, "鈷系氧化物電極對氧氣產生及葡萄糖氧化之電化學及材料特性," 國立成功大學碩士論文, 1995.
-
[37] G. Toussaint, P. Stevens, L. Akrour, R. Rouget, and F. Fourgeot, "Development of a rechargeable zinc-air battery in Metal/Air and Metal/Water Batteries," vol. 28, N. Dudney, Ed., ed Pennington: Electrochemical Soc Inc, 2010, pp. 25-34.
-
[40] K. Kinoshita, "Carbon: electrochemical and physicochemical properties," 1988.
-
[46] F.A.Cotton, G.Wilkinson, and P.L.Gaus, Basic Inorganic Chemistry, 3rd ed. Inc. New York: John Wiley and Sons, 1995.
-
[47] R. Janes and E. A. Moore, Metal-ligand bonding: Royal society of chemistry, 2004.
-
[48] K. E. Sickafus, J. M. Wills, and N. W. Grimes, "Structure of spinel," Journal of the American Ceramic Society, vol. 82, pp. 3279-3292, 1999.
-
[50] M. Hamdani, R. Singh, and P. Chartier, "Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes," Int. J. Electrochem. Sci, vol. 5, p. 556, 2010.
-
[55] 胡啟章, "電化學原理與方法," 五南圖書出版股份有限公司, 2002.
-
[63] Z.-Y. Tian, P. H. T. Ngamou, V. Vannier, K. Kohse-Höinghaus, and N. Bahlawane, "Catalytic oxidation of VOCs over mixed Co-Mn oxides," Applied Catalysis B: Environmental, vol. 117, pp. 125-134, 2012.
-
[85] 廖士權, "錳系氧化物電觸媒於鋅空氣電池陰極之研究," 國立中正大學碩士論文, 2009.
|