题名

以化學氣相沉積法成長硼摻雜型石墨烯和新穎氮化矽薄膜前驅物之合成

并列篇名

Develop Boron-doped Graphene by Chemical Vapor Deposition and Synthesis of Novel Precursors of Silicon Nitride Film

作者

姜妍忻

关键词

化學氣相沉積法 ; 原子層沉積法 ; 摻雜型石墨烯 ; 氮化矽薄膜

期刊名称

清華大學化學系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

劉瑞雄

内容语文

繁體中文

中文摘要

第一章 我們合成含硼的多芳香環碳氫化合物並藉由化學氣相沉積法進行硼摻雜型石墨烯的成長,成功製備大面積均勻的單層硼摻雜石墨烯,而後進行硼摻雜石墨烯物理性質的分析與量測。最後將轉移的硼摻雜石墨烯使用圖紋化製程製備成OLED元件的透明電極,以硼摻雜石墨烯作為陽極與綠色磷光元件匹配並且擁有良好的發光效率。 第二章 由於電子元件微小化的趨勢,原子層沉積法為目前薄膜製程研究的重點。我們以使用自組裝原子層沉積系統製成氮化矽薄膜為目標,改良與設計矽的前驅物。最後成功得到絕緣良好的介電薄膜。

英文摘要

Chapter I We synthesized boron-contained polyaromatic hydrocarbon ,and it was used to grow boron-doped graphene by chemical vapor deposition, then we got large area and uniform monolayer graphene. We measured and analyzed its physical properties. Boron-doped graphene was patterned and used as anode in a green phosphorescent OLED device that showed an outstanding external quantum efficiency. Chapter II Since electronic devices were miniaturizated, atomic layer deposition (ALD) method for thin film has been focused recently. In this chapter, to produce silicon nitride thin film with using synthesis of novel silicon precursor is our main research goal, by home-made ALD system. Finally, we got the good insulating film.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系所
参考文献
  1. 1.M. Scarselli, P. Castrucci, M. De Crescenzi, J. Phys.: Condens. Matter 2012, 24, 1.
    連結:
  2. 4.S. Iijima, Nature 1991, 354, 56
    連結:
  3. 9.William S. Hummers, Richard E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
    連結:
  4. 16.Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, Science 2009, 324, 1312.
    連結:
  5. 18.Ki Chang Kwon , Kyoung Soon Choi , and Soo Young Kim, Adv. Funct. Mater. 2012, 22, 4724.
    連結:
  6. 20.Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, Gui Yu, Nano Lett. 2009, 9, 1752.
    連結:
  7. 25.Shigeki Kawai, Shohei Saito, Shinichiro Osumi, Shigehiro Yamaguchi, Adam S. Foster, Peter Spijker, Ernst Meyer, Nature Communications 2015, 6, 1.
    連結:
  8. 28.K. C. Kwon, B. J. Kim, J. L. Lee, S. Y. Kim, J. Mater. Chem. C 2013, 1, 2463.
    連結:
  9. 1.Cheol Seong Hwang, Atomic Layer Deposition for Semiconductors, 2014.
    連結:
  10. 3.Steven M. George, Chem. Rev. 2010, 110, 111.
    連結:
  11. 第一章
  12. 2.H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, Nature 1985, 318,162.
  13. 3.W. Kratschmer, Lowell D. Lamb, K. Fostiropoulos, Donald R. Huffman, Nature, 1990, 347, 354.
  14. 5.Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, Science, 2002, 297, 787.
  15. 6.K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
  16. 7.L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phy. Rep. 2009, 473, 51.
  17. 8.Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, J. Phys. Chem. B 2004, 108, 19912.
  18. 10.Ching-Yuan Su, Yanping Xu, Wenjing Zhang, Jianwen Zhao, Aiping Liu, Xiaohong Tang, Chuen-Horng Tsai, Yizhong Huang, and Lain-Jong Li, ACSNano, 2010, 4, 5285.
  19. 11.Goki Eda, Giovanni Fanchini, Manish Chhowalla, Nature nanotechnology 2008, 3, 270.
  20. 12.Sungjin Park, Rodney S. Ruoff, Nature nanotechnology 2009, 4, 217.
  21. 13.Heyong He, Jacek Klinowski, Michael Forster, Anton Lerf, Chemical Physics Letters 1998, 287, 53.
  22. 14.Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, Shin-Shem Pei, Appl. Phys. Lett. 2008, 93, 113103.
  23. 15.Yi Zhang, Luyao Zhang, Chongwu Zhou, Accounts of chemical research 2013, 46, 2329.
  24. 17.Jong Sik Oh, Kyong Nam Kim, and Geun Young Yeom, J. Nanosci. Nanotechnol. 2014, 14, 1120.
  25. 19.S Tongay, K Berke, M Lemaitre, Z Nasrollahi, D B Tanner, A FHebard, B R Appleton, Nanotechnology 2011, 22, 1.
  26. 21.A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nanotechnology, 2008, 3, 210.
  27. 22.Xiao Li , Lili Fan , Zhen Li , Kunlin Wang , Minlin Zhong , Jinquan Wei , Dehai Wu , Hongwei Zhu, Adv. Energy Mater. 2012, 2, 425.
  28. 23.Huan Wang , Yu Zhou , Di Wu , Lei Liao , Shuli Zhao , Hailin Peng, Zhongfan Liu, small 2013, 9, 1316.
  29. 24.Ryan R. Cloke, Tomas Marangoni, Giang D. Nguyen, Trinity Joshi, Daniel J. Rizzo, Christopher Bronner, Ting Cao, Steven G. Louie, Michael F. Crommie, Felix R. Fischer, J. Am. Chem. Soc. 2015, 137, 8872.
  30. 26.Tae-Hee Han, Youngbin Lee, Mi-Ri Choi, Seong-Hoon Woo, Sang-Hoon Bae, Byung Hee Hong, Jong-Hyun Ahn, Tae-Woo Lee, Nature Photonics 2012, 6, 105.
  31. 27.Claas Hoffend, Martin Diefenbach, Estera Januszewski, Michael Bolte, Hans-Wolfram Lerner, Max C. Holthausen, Matthias Wagner, Dalton Trans. 2013, 42, 13826.
  32. 29.H. Z. Geng, K. K. Kim, C. Song, N. T. Xuyen, S. M. Kim, K. A. Park, D. S. Lee, K. H. An, Y. S. Lee, Y. Chang, Y. J. Lee, J. Y. Choi, A. Benayad, Y. H. Lee, J. Mater. Chem. 2008, 18, 1261.
  33. 第二章
  34. 2.Ville Miikkulainen, Markku Leskelä, Mikko Ritala, Riikka L. Puurunen, J. Appl. Phys. 2013, 113, 021301.
  35. 4.Ritala, M.; Leskela, M.; Nykanen, E.; Soininen, P.; Niinisto, L., Thin Solid Films 1993, 225, 288.
  36. 5.Kim, H.; Cabral, C.; Lavoie, C.; Rossnagel, S. M., J. Vac. Sci. Technol. B, 2002, 20, 1321.
  37. 6.Harm C. M. Knoops, Eline M. J. Braeken, Koen de Peuter, Stephen E. Potts, Suvi Haukka, Viljami Pore, Wilhelmus M. M. Kessels, ACS Appl. Mater. Interfaces 2015, 7, 19857.
  38. 7.Woochool Jang, Heeyoung Jeon, Chunho Kang, Hyoseok Song, Jingyu Park, Hyunjung Kim, Hyungtak Seo, Markku Leskela, Hyeongtag Jeon, Phys. Status Solidi A, 2014, 211, 2166.
  39. 8.Rafaiel A. Ovanesyan, Dennis M. Hausmann, Sumit Agarwal, ACS Appl. Mater. Interfaces 2015, 7, 10806.