题名

掌性金金屬催化重氮化合物與亞硝基苯之環化反應和氧化鎢前驅物合成並應用於原子層沉積薄膜之成長

并列篇名

Chiral Gold-Catalyzed Cyclization of Nitrosobenzene and Diazos and Synthesis of Precursors for Tungsten Oxide Film Growth by Atomic Layer Deposition

作者

林怡禎

关键词

重氮化合物 ; 鎢 ; 原子層沉積法 ; 金金屬催化 ; 環化反應

期刊名称

清華大學化學系所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

劉瑞雄

内容语文

繁體中文

中文摘要

中文摘要 本論文分為兩個章節,第一章是利用掌性的金金屬催化硝基苯和重氮化合物的[3+2]環化反應。第二章為探究新穎前驅物之合成並應用於原子沉積技術生成氧化鎢薄膜。 第一章 我們合成不同的掌性金催化劑,對硝基苯和兩種不同的重氮化合物進行[3+2]環化反應,並且得到具有光學活性的異噁唑五元環產物,並試圖增加基質的立障來提產物的高對應體過量百分率( ee% )。 第二章 隨著原子層沉積技術的廣泛應用,我們目標以原子層沉積的方式生成氧化鎢薄膜。我們以六羰基鎢為基準,接上不同配位基增加其反應性與熱穩定性,改良成五種鎢錯合物,選擇最好的前驅物進行測試,並且成功的找到優化條件,順利生成氧化鎢薄膜。

英文摘要

Abstract This thesis is devided into two sections. The first topic is chiral gold(I)-catalyzed [3+2] cycloaddition between ethyl diazoacetates, nitrosoarenes, and vinyldiazo carbonyls to yield chiral isoxazolidine products. The second one explores the synthesis of a novel of precursors and the growth tungsten oxide film by atomic layer deposition using that were just produced. Chapter 1 Chiral gold(I)-catalyzed cycloaddition of ethyl diazoacetate, nitrosoarenes, and vinyldiazo carbonyl to yield isoxazolidine derivatives stereoselectively, are already described. We try to raise the enantiomeric excess (ee%) of the products by using bulky substrate. Chapter 2 As for Chapter 2, with the wide application of atomic layer deposition technology, we aim to generate atomic layer deposition tungsten oxide films using tungsten hexacarbonyl as the basic substrate. We synthesized tungsten complexes to increase the reactivity and the thermal stability by the meditation of different ligands. We choose the best precursor to do atomic layer deposition and generate tungsten oxide films successfully.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系所
参考文献
  1. [1] a) X. Wang, Q. M. Abrahams, P. Zavalij, M. P. Doyle, Angew. Chem. Int. Ed. 2012, 51, 5907–5910; b) Angew. Chem. 2012, 124, 6009–6012.
    連結:
  2. [2] C. Qin, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 14516-14519.
    連結:
  3. [3] M. Yan, N. Jacobsen, W. Hu, L. S. Gronenberg, M. P. Doyle, J. T. Colyer, D. Bykowski, Angew. Chem. Int. Ed. 2004, 43, 6713–6716.
    連結:
  4. [5] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728–20731.
    連結:
  5. [6] C. Qin, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 14516–14519.
    連結:
  6. [9] V. V. Pagar, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 4923 –4926.
    連結:
  7. [11] B. Lu, C. Li, L. Zhang, J. Am. Chem. Soc. 2010, 132, 14070 – 14072
    連結:
  8. [12] S. Bhar, S. K. Chaudhuri, Tetrahedron, 2003, 59, 3493–3498.
    連結:
  9. [1] National Applied Research Laboratories for Atomic Layer Deposition 2015, 128 Edition.
    連結:
  10. [2] S. E. Potts, H. B. Profijt, R. Roelofs, W. M. M. Kessels, Chem. Vap. Deposition., 2013, 19, 125-133.
    連結:
  11. [3] J. W. Klaus, S. J. Ferro, S. M. George, J. Electrochem. Soc., 2000, 147, 1175-1181.
    連結:
  12. [5] J. Malm, T. Sajavaara, M. Karppinen, Chem. Vap. Deposition. 2012, 18, 245-248
    連結:
  13. 第一章
  14. [4] J. Barluenga, G. Lonzi, L. Riesgo, L. A. Lypez, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200–13202.
  15. [7] M. P. Doyle, M. Yan, W. Hu, L. S. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692
  16. [8] Y. Liu, K. Bakshi, P. Zavalij, M. P. Doyle, Org. Lett. 2010, 12, 4304–4307.
  17. [10] a) A. M. Jadhav, V. V. Pagar, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 11809–11813; Angew. Chem. 2012, 124, 11979 – 11983; b) V. V. Pagar, A. M. Jadhav, R. S. Liu, J. Org. Chem. 2013, 78, 5711–5716; c) S. N. Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 5444–5448; Angew. Chem. 2014, 126, 5548–5552.
  18. [13] S. P. Chavan, K. Shivasankar, R. Sivappa, R. Kale, Tetrahedron Letters , 2002, 43, 8583–8586
  19. 第二章
  20. [4] R. Liu, Y. Lin, L. Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Angew Chem. 2011, 123, 519-522.
  21. [6] D. Vernardou, H. Drosos, E. Spanakis, E. Koudoumas, C. Savvakis, N. Katsarakis, J. Mater. Chem., 2011, 21, 513-517
  22. [7] R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Smart Mater. Struct., 2006, 15, 877–888