英文摘要
|
The synthesis, structural characterization, and properties of seven compounds are included in this thesis. Among them, four are gallium phosphites, one is gallium zincophosphite, and two are organic-inorganic hybrid zinc phosphates. The crystal structures and chemical formulas for all compounds were determined by single-crystal X-ray diffraction analysis; the purity was examined by comparing powder diffraction patterns with theoretical patterns; gas sorption and optical properties were also measured. Based on different metal centers, correlations of structure, these compounds are grouped into three systems for discussion, namely system A, B, and C.
System A, the “template-cladded” strategy was proposed: the free space of the channels would be created if the organic template were pushed toward the inorganic channel wall. Herein, we chose long-alkyl-chain polyamines as the template and successfully synthesized A1 and NTHU-15 series compound in different ratios of solvents. The structural features of A1 and NTHU-15 are different, long-alkyl-chain polyamine templates blocked the channel space in Al but not in NTHU-15. The organic templates anchor onto the inorganic channel walls, and therefore succeeded in releasing channel space of up to ~24 % of solvent accessible volume. NTHU-15 displays significant carbon dioxide selective adsorption, and has been successful at overcoming the long-standing problem of organic-templated extra-large-channel structures as opposed to a "true open" framework.
System B, the development of NTHU-13 series were continued, using the long-alkyl-chain monoamines (tetradecylamine, 14C) as templates to synthesize extra-large channel gallium zincophosphite (56R-NTHU-13), and enlarge the channel size from 48R microporous to 56R mesoporous. Besides, previously reported microporous structures have been synthesized by template-directed hydrothermal or solvothermal synthesis; however, the structural channels have not been controlled by using any specific type of template molecule. By using long-alkyl-chain monoamines, the systematic synthetic method and the channel size and the structural connectivity can be achieved and predicted in NTHU-13 series, and the success of the system is a major breakthrough.
System C, we continued the research of NTHU-11 and (H2tmdp)[Zn2(HPO4)2(m-bdc)] (D), which were various optical analogues with identical structures. Two optical analogues of NTHU-2, namely C-120 and C-160 were prepared by a minute amount of solvent under 120 oC and 160 oC, respectively. Their optical properties can be changed with increasing temperature. C-160 and D-160 display yellow-orange light with peaks centered at 600 nm. Further measurements showed that the unusual photoluminescence properties are caused by free radical, which were formed from tmdp by higher temperature and examined by EPR experiment.
|
参考文献
|
-
[1] (a) D. W. Breck, Zeolite Molecular Sieves,Wiley, New York, 1974; (b) J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227; (c) R. D. Miller, Science 1999, 286, 421; (d) J. M. Thomas, Angew. Chem., Int. Ed. 1999, 38, 3588; (e) S. M. Kuznickl, et al. Nature 2001, 412, 720 ; (f) M. E. Davis, Nature 2002, 417, 813; (g) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469; (h) P. M. Forster, J. Eckert, J. S. Chang, S. E. Park, G. Férey, A. K. Cheetham, J. Am. Chem. Soc. 2003, 125, 1309; (i) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334; (j) R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev. 2008, 108, 3549.
連結:
-
[3] R. M. Barrer, J. Chem. Soc. 1948, 127.
連結:
-
[7] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
連結:
-
[8] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166
連結:
-
[12] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770.
連結:
-
[14] H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, S. L. Wang, Science 2013, 339, 811.
連結:
-
[18] I. D. Brown, D. Altermann, Acta Crystallogr. 1985, B41, 244.
連結:
-
[19] L. Spek, Acta Crystallogr. 1990, A46, 34.
連結:
-
[20] C. F. Macrae, I. J. Bruno, et al. J. Appl. Cryst., 2008, 41, 466.
連結:
-
[2] A. F. Cronstedt, Akad handl. Stockholm 1756, 17, 120.
-
[4] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146.
-
[5] M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698.
-
[9] (a) K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, and O. M. Yaghi, PNAS 2006, 103, 10186 (b) B. Wang, A. P. Cote, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Nature 2008, 453, 207
-
[10] H. Wang, B. Li, H. Wu, T. -L. Hu, Z. Yao, W. Zhou, S. Xiang, and B. Chen, J. Am. Chem. Soc. 2015, 137, 9963
-
[11] W. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R. Champness, and M. Schröder, J. Am. Chem. Soc. 2010, 132, 14457
-
[13] H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. Fraser Stoddart, O. M. Yaghi, Science 2012, 336, 1018.
-
[15] 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
-
[16] APEX II software package; Bruker AXS, Madison, WI, 2008.
-
[17] G. M. Sheldrick, SHELXTL programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
|