题名

奈米碳管薄膜表面改質之製備與應用及其特性分析

并列篇名

Study on the Preparation and Characterization of Surface Treatment on Transparent Carbon Nanotubes Thin films

作者

廖宏倫

关键词

奈米碳管 ; 官能基化 ; 共軛高分子 ; 拉曼 ; 疊氮苯氨 ; 分散性 ; carbon nanotubes ; functionalized ; conjugated polymer ; Raman ; azidoaniline ; dispersibility

期刊名称

清華大學工程與系統科學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

王本誠

内容语文

英文

中文摘要

本研究分別以(i)非共價改質法和(ii)共價改質法,兩個方向對我們奈米碳管進行表面改質。 在非共價改質法中,我們使碳管表面改質上羧基,和基材上修飾氨基,設計簡易自組裝流程,欲使基材與碳管薄膜間產生共價鍵結,進而達到提升薄膜附著力與均勻性之目的,我們藉由SEM、AFM分析奈米碳管薄膜之形貌,並利用水槍噴灑的方式測試薄膜的附著性,其中方均跟粗糙度由原本未處理前的211nm降至21.3nm,造成薄膜樣品粗糙度與附著力的改善,我們推測是因為碳管與基材間產生共價鍵結,使樣品在成膜時,產生的形貌差異。本研究也討論改質碳管在有機太陽能電池元件上的應用潛力,利用Raman、 AFM與SEM等儀器量測結果,對改質奈米碳管做更深入的物化特性分析。 而在共價改質法中,我們使用4-叠氮苯氨在紫外光照射時產生的自由基,與我們碳管管壁反應,得到管壁官能基化具苯氨的奈米碳管,再藉由表面的官能基去與2-氨基苯磺酸、2-氨基-1,4-苯二磺酸以及(3-氨基苯基)磷酸做後續接枝聚合反應,期待導入共軛高分子優異的導電特性至碳管結構中,藉此改善碳管整體之電性。此外碳管管壁修飾上具親水的官能基團(如氨基、磷酸、磺酸等),使得共價改質後的碳管,在酒精溶劑中靜置一個月,仍然表現相當優異的分散性質,這樣的結果也說明了,搭配適當的表面改質技術,能使奈米碳管有更多元的應用空間。本研究利用FTIR、XPS與Raman對改質後的碳管做結構上的分析,以及利用TGA以及四點探針,討論改質後碳管薄膜之熱性質與導電特性及其應用潛力分析。

英文摘要

Abstract This study is working on the two-parts modification of carbon nanotubes(CNTs). (I) Non-covalent (II) Covalent modification (I) Pyrene derivatives attach to the surface of CNTs via physisorption, which is the result of a π-π stacking interaction between the pyrene moiety and the CNTs sidewall. We present a simple self-assembly technique to fabricate robust CNTs thin films on glass surface. By employing a cross-linking reagent such as DIC, between the CNT-pyrene complex and the APTES-modified glass substrate with amino groups, it leads to the formation of a strong bonding between CNTs thin films and glass substrate. Characterization by AFM and SEM reveal the morphology of the thin films. The best RMS roughness of our sample is 21.3 nm, which has significant difference compared to the one without APTES-treatment (211nm). We also used water jet to test the interfacial adhesion of the sample and found that the films treated with APTES were robust. Our results on smooth and robust CNTs thin films that show promising potential in industrial applications. (II) We obtained sidewall functionalized CNTs after radical reacted with 4-azidoaniline hydrochloride by UV source. Modified CNTs were prepared by in situ oxidative polymerization with three different monomers. It was found that the dispersion stability of modified CNTs were significantly improved compared to those of the raw SWCNTs. We used FTIR, XPS and Raman spectra to explain the bonding and quality of modified CNTs. Characterized by TGA and four-point probe to discuss the thermal and electrical properties of modified CNTs.

主题分类 原子科學院 > 工程與系統科學系
工程學 > 工程學總論
参考文献
  1. [1] S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, vol. 354, pp. 56-58, Nov 7 1991.
    連結:
  2. [3] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, et al., "Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films," Journal of Applied Physics, vol. 92, pp. 4024-4030, Oct 1 2002.
    連結:
  3. [4] J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites," Polymer, vol. 44, pp. 5893-5899, Sep 2003.
    連結:
  4. [6] C. Y. Wei, D. Srivastava, and K. J. Cho, "Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites," Nano Letters, vol. 2, pp. 647-650, Jun 2002.
    連結:
  5. [7] C. L. Cheung, J. H. Hafner, and C. M. Lieber, "Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, pp. 3809-3813, Apr 11 2000.
    連結:
  6. [8] C. H. Poa, S. R. P. Silva, P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, "Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix," Applied Physics Letters, vol. 80, pp. 3189-3191, Apr 29 2002.
    連結:
  7. [9] C. Y. Su, A. Y. Lu, Y. L. Chen, C. Y. Wei, P. C. Wang, and C. H. Tsai, "Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells," Journal of Materials Chemistry, vol. 20, pp. 7034-7042, 2010.
    連結:
  8. [10] R. F. Service, "Superstrong nanotubes show they are smart, too," Science, vol. 281, pp. 940-942, Aug 14 1998.
    連結:
  9. [11] M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, "Thermal and mechanical properties of single-walled carbon nano tubes-polypropylene composites prepared by melt processing," Carbon, vol. 43, pp. 1499-1505, Jun 2005.
    連結:
  10. [13] P. C. Wang, L. H. Liu, D. A. Mengistie, K. H. Li, B. J. Wen, T. S. Liu, et al., "Transparent electrodes based on conducting polymers for display applications," Displays, vol. 34, pp. 301-314, Oct 2013.
    連結:
  11. [14] P. C. Wang, E. C. Venancio, D. M. Sarno, and A. G. MacDiarmid, "Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media," Reactive & Functional Polymers, vol. 69, pp. 217-223, Apr 2009.
    連結:
  12. [15] G. Wang, Y. Ding, F. Wang, X. Li, and C. Li, "Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility," Journal of Colloid and Interface Science, vol. 317, pp. 199-205, Jan 1 2008.
    連結:
  13. [16] K. Zhang, L. L. Zhang, X. S. Zhao, and J. S. Wu, "Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes," Chemistry of Materials, vol. 22, pp. 1392-1401, Feb 23 2010.
    連結:
  14. [17] O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, "Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites," Scripta Materialia, vol. 60, pp. 551-554, Apr 2009.
    連結:
  15. [18] N. M. Rodriguez, "A Review of Catalytically Grown Carbon Nanofibers," Journal of Materials Research, vol. 8, pp. 3233-3250, Dec 1993.
    連結:
  16. [19] C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, et al., "Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method," Carbon, vol. 37, pp. 1865-1868, 1999.
    連結:
  17. [20] M. Ishigami, J. Cumings, A. Zettl, and S. Chen, "A simple method for the continuous production of carbon nanotubes," Chemical Physics Letters, vol. 319, pp. 457-459, Mar 24 2000.
    連結:
  18. [21] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization," Chemical Physics Letters, vol. 243, pp. 49-54, Sep 8 1995.
    連結:
  19. [22] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, "Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal," Chemical Physics Letters, vol. 278, pp. 102-106, Oct 24 1997.
    連結:
  20. [23] P. R. Birkett, A. J. Cheetham, B. R. Eggen, J. P. Hare, H. W. Kroto, and D. R. M. Walton, "Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter," Chemical Physics Letters, vol. 281, pp. 111-114, Dec 19 1997.
    連結:
  21. [24] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, et al., "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Applied Physics Letters, vol. 72, pp. 3282-3284, Jun 22 1998.
    連結:
  22. [25] C. T. White and T. N. Todorov, "Carbon nanotubes as long ballistic conductors," Nature, vol. 393, pp. 240-242, May 21 1998.
    連結:
  23. [26] Z. H. Zhang, J. C. Peng, and H. Zhang, "Low-temperature resistance of individual single-walled carbon nanotubes: A theoretical estimation," Applied Physics Letters, vol. 79, pp. 3515-3517, Nov 19 2001.
    連結:
  24. [28] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, "Carbon nanotube quantum resistors," Science, vol. 280, pp. 1744-1746, Jun 12 1998.
    連結:
  25. [29] H. J. Dai, "Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes (vol 272, pg 523, 1996)," Science, vol. 272, pp. 1861-1861, Jun 28 1996.
    連結:
  26. [32] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, et al., "Elastic and shear moduli of single-walled carbon nanotube ropes," Physical Review Letters, vol. 82, pp. 944-947, Feb 1 1999.
    連結:
  27. [33] C. C. Teng, C. C. M. Ma, Y. W. Huang, S. M. Yuen, C. C. Weng, G. H. Chen, et al., "Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites," Composites Part a-Applied Science and Manufacturing, vol. 39, pp. 1869-1875, Dec 2008.
    連結:
  28. [34] H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, et al., "Work functions and surface functional groups of multiwall carbon nanotubes," Journal of Physical Chemistry B, vol. 103, pp. 8116-8121, Sep 23 1999.
    連結:
  29. [35] R. Graupner, J. Abraham, A. Vencelova, T. Seyller, F. Hennrich, M. M. Kappes, et al., "Doping of single-walled carbon nanotube bundles by Bronsted acids," Physical Chemistry Chemical Physics, vol. 5, pp. 5472-5476, Dec 15 2003.
    連結:
  30. [36] R. J. Chen, Y. G. Zhang, D. W. Wang, and H. J. Dai, "Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization," Journal of the American Chemical Society, vol. 123, pp. 3838-3839, Apr 25 2001.
    連結:
  31. [37] N. Nakashima, Y. Tomonari, and H. Murakami, "Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion," Chemistry Letters, pp. 638-639, Jun 5 2002.
    連結:
  32. [38] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, "Effect of acid treatment on carbon nanotube-based flexible transparent conducting films," Journal of the American Chemical Society, vol. 129, pp. 7758-+, Jun 27 2007.
    連結:
  33. [39] H. Tantang, J. Y. Ong, C. L. Loh, X. C. Dong, P. Chen, Y. Chen, et al., "Using oxidation to increase the electrical conductivity of carbon nanotube electrodes," Carbon, vol. 47, pp. 1867-1870, Jun 2009.
    連結:
  34. [40] D. R. Ulrich, "Multifunctional Macromolecular Ultrastructures - Introductory Comments Speciality Polymers 86," Polymer, vol. 28, pp. 533-542, Apr 1987.
    連結:
  35. [41] S. A. Contera, T. Yoshinobu, H. Iwasaki, and K. Kisoda, "Mesoscopic scanning tunneling and atomic force microscopy study of the misfit-layer compounds (LaSe)(x)NbSe2 and (PbSe)(x)NbSe2," Surface Science, vol. 441, pp. 384-390, Nov 1 1999.
    連結:
  36. [42] M. J. Moghaddam, S. Taylor, M. Gao, S. M. Huang, L. M. Dai, and M. J. McCall, "Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry," Nano Letters, vol. 4, pp. 89-93, Jan 2004.
    連結:
  37. [44] J. K. Wu, C. S. Yang, Y. S. Wu, P. C. Wang, and F. G. Tseng, "Continuous affinity-gradient nano-stationary phase served as a column for reversed-phase electrochromatography and matrix carrier in time-of-flight mass spectrometry for protein analysis," Analytica Chimica Acta, vol. 889, pp. 166-171, Aug 19 2015.
    連結:
  38. [2] A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, et al., "Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles.," Nature, vol. 423, pp. 703-703, Jun 12 2003.
  39. [5] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, "Carbon nanotube composites for thermal management," Applied Physics Letters, vol. 80, pp. 2767-2769, Apr 15 2002.
  40. [12] B. J. Landi, R. P. Raffaelle, S. L. Castro, and S. G. Bailey, "Single-wall carbon nanotube-polymer solar cells," Progress in Photovoltaics, vol. 13, pp. 165-172, Mar 2005.
  41. [27] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, et al., "Luttinger-liquid behaviour in carbon nanotubes," Nature, vol. 397, pp. 598-601, Feb 18 1999.
  42. [30] L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, et al., "Quantum transport in a multiwalled carbon nanotube," Physical Review Letters, vol. 76, pp. 479-482, Jan 15 1996.
  43. [31] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon nanotubes," Physics Reports-Review Section of Physics Letters, vol. 409, pp. 47-99, Mar 2005.
  44. [43] M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, et al., "Sidewall functionalization of carbon nanotubes," Angewandte Chemie-International Edition, vol. 40, pp. 4002-+, 2001.