参考文献
|
-
[1] Ratner, B.D. and S.J. Bryant, Biomaterials: Where We Have Been and Where We Are Going. Annual Review of Biomedical Engineering, 2004. 6(1): p. 41-75.
連結:
-
[2] Zhang, L., Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B.D. Ratner and S. Jiang, Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotech, 2013. 31(6): p. 553-556.
連結:
-
[3] Bryers, J.D., Medical Biofilms. Biotechnology and bioengineering, 2008. 100(1): p. 1-18.
連結:
-
[4] Li, M., K.G. Neoh, L.Q. Xu, R. Wang, E.-T. Kang, T. Lau, D.P. Olszyna and E. Chiong, Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir, 2012. 28(47): p. 16408-16422.
連結:
-
[5] Jiang, S. and Z. Cao, Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 2010. 22(9): p. 920-932.
連結:
-
[6] Vaisocherová, H., W. Yang, Z. Zhang, Z. Cao, G. Cheng, M. Piliarik, J. Homola and S. Jiang, Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Analytical Chemistry, 2008. 80(20): p. 7894-7901.
連結:
-
[7] Zhang, Z., J.A. Finlay, L. Wang, Y. Gao, J.A. Callow, M.E. Callow and S. Jiang, Polysulfobetaine-Grafted Surfaces as Environmentally Benign Ultralow Fouling Marine Coatings. Langmuir, 2009. 25(23): p. 13516-13521.
連結:
-
[8] Chatzinikolaidou, M., M. Laub, H. Rumpf and H.P. Jennissen, Biocoating of Electropolished and Ultra-Hydrophilic Titanium and Cobalt Chromium Molybdenum Alloy Surfaces with Proteins. Materialwissenschaft und Werkstofftechnik, 2002. 33(12): p. 720-727.
連結:
-
[9] Hoffman, A.S., Letter to the Editor: A general classification scheme for “hydrophilic” and “hydrophobic” biomaterial surfaces. Journal of Biomedical Materials Research, 1986. 20(9): p. ix-xi.
連結:
-
[10] Chang, Y., S.-C. Liao, A. Higuchi, R.-C. Ruaan, C.-W. Chu and W.-Y. Chen, A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
連結:
-
[11] Chen, S., L. Li, C. Zhao and J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
連結:
-
[12] Roth, C.M. and A.M. Lenhoff, Electrostatic and van der Waals contributions to protein adsorption: computation of equilibrium constants. Langmuir, 1993. 9(4): p. 962-972.
連結:
-
[13] Johnson, C.A., P. Wu and A.M. Lenhoff, Electrostatic and van der Waals Contributions to Protein Adsorption: 2. Modeling of Ordered Arrays. Langmuir, 1994. 10(10): p. 3705-3713.
連結:
-
[14] Sin, M.-C., S.-H. Chen and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polym J, 2014. 46(8): p. 436-443.
連結:
-
[15] Liu, L., W. Li and Q. Liu, Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014. 6(6): p. 599-614.
連結:
-
[16] Leduc, E.H. and S.J. Holt, HYDROXYPROPYL METHACRYLATE, A NEW WATER-MISCIBLE EMBEDDING MEDIUM FOR ELECTRON MICROSCOPY. The Journal of Cell Biology, 1965. 26(1): p. 137-155.
連結:
-
[17] Chen, Q., D. Zhang, G. Somorjai and C.R. Bertozzi, Probing the surface structural rearrangement of hydrogels by sum-frequency generation spectroscopy. Journal of the American Chemical Society, 1999. 121(2): p. 446-447.
連結:
-
[18] Mrabet, B., M.N. Nguyen, A. Majbri, S. Mahouche, M. Turmine, A. Bakhrouf and M.M. Chehimi, Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science, 2009. 603(16): p. 2422-2429.
連結:
-
[19] Yoshikawa, C., A. Goto, Y. Tsujii, T. Fukuda, T. Kimura, K. Yamamoto and A. Kishida, Protein Repellency of Well-Defined, Concentrated Poly(2-hydroxyethyl methacrylate) Brushes by the Size-Exclusion Effect. Macromolecules, 2006. 39(6): p. 2284-2290.
連結:
-
[20] Harris, J.M., Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Journal, 2013. p.
連結:
-
[22] Lahiri, J., L. Isaacs, J. Tien and G.M. Whitesides, A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on an Active Ester as a Common Reactive Intermediate: A Surface Plasmon Resonance Study. Analytical Chemistry, 1999. 71(4): p. 777-790.
連結:
-
[23] Zheng, J., L. Li, S. Chen and S. Jiang, Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers. Langmuir, 2004. 20(20): p. 8931-8938.
連結:
-
[24] Zheng, J., L. Li, H.-K. Tsao, Y.-J. Sheng, S. Chen and S. Jiang, Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study. Biophysical Journal, 2005. 89(1): p. 158-166.
連結:
-
[25] Li, L., S. Chen, J. Zheng, B.D. Ratner and S. Jiang, Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers: The Molecular Basis for Nonfouling Behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
連結:
-
[26] Lee, J.H., H.B. Lee and J.D. Andrade, Blood compatibility of polyethylene oxide surfaces. Progress in Polymer Science, 1995. 20(6): p. 1043-1079.
連結:
-
[27] He, Y., Y. Chang, J.C. Hower, J. Zheng, S. Chen and S. Jiang, Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. Physical Chemistry Chemical Physics, 2008. 10(36): p. 5539-5544.
連結:
-
[28] Luk, Y.-Y., M. Kato and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p. 9604-9608.
連結:
-
[29] Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama and G.M. Whitesides, A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
連結:
-
[30] Shen, M., L. Martinson, M.S. Wagner, D.G. Castner, B.D. Ratner and T.A. Horbett, PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2002. 13(4): p. 367-390.
連結:
-
[31] Singer, S.J. and G.L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes. Science, 1972. 175(4023): p. 720-731.
連結:
-
[34] Ishihara, K., H. Oshida, Y. Endo, T. Ueda, A. Watanabe and N. Nakabayashi, Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research, 1992. 26(12): p. 1543-1552.
連結:
-
[35] Iwasaki, Y. and K. Ishihara, Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry, 2005. 381(3): p. 534-546.
連結:
-
[36] Ishihara, K., T. Ueda and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J, 1990. 22(5): p. 355-360.
連結:
-
[37] Holmlin, R.E., X. Chen, R.G. Chapman, S. Takayama and G.M. Whitesides, Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir, 2001. 17(9): p. 2841-2850.
連結:
-
[38] Kane, R.S., P. Deschatelets and G.M. Whitesides, Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
連結:
-
[39] Tsai, W.B., Q. Shi, J.M. Grunkemeier, C. Mcfarland and T.A. Horbett, Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. Journal of Biomaterials Science, Polymer Edition, 2004. 15(7): p. 817-840.
連結:
-
[40] Ladd, J., Z. Zhang, S. Chen, J.C. Hower and S. Jiang, Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules, 2008. 9(5): p. 1357-1361.
連結:
-
[41] Chang, Y., W.-J. Chang, Y.-J. Shih, T.-C. Wei and G.-H. Hsiue, Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. ACS Applied Materials & Interfaces, 2011. 3(4): p. 1228-1237.
連結:
-
[42] Zhang, Z., T. Chao, L. Liu, G. Cheng, B.D. Ratner and S. Jiang, Zwitterionic Hydrogels: an in Vivo Implantation Study. Journal of Biomaterials Science, Polymer Edition, 2009. 20(13): p. 1845-1859.
連結:
-
[43] Zhang, Z., T. Chao, S. Chen and S. Jiang, Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22(24): p. 10072-10077.
連結:
-
[44] Zhang, Z., S. Chen and S. Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
連結:
-
[45] Yang, W., H. Xue, W. Li, J. Zhang and S. Jiang, Pursuing “Zero” Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir, 2009. 25(19): p. 11911-11916.
連結:
-
[46] Zhang, Z., M. Zhang, S. Chen, T.A. Horbett, B.D. Ratner and S. Jiang, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291.
連結:
-
[47] Zhang, Z., H. Vaisocherová, G. Cheng, W. Yang, H. Xue and S. Jiang, Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental Effects. Biomacromolecules, 2008. 9(10): p. 2686-2692.
連結:
-
[48] Shao, Q. and S. Jiang, Effect of Carbon Spacer Length on Zwitterionic Carboxybetaines. The Journal of Physical Chemistry B, 2013. 117(5): p. 1357-1366.
連結:
-
[49] Li, D., Q. Zheng, Y. Wang and H. Chen, Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer Chemistry, 2014. 5(1): p. 14-24.
連結:
-
[50] Chang, Y., S. Chen, Z. Zhang and S. Jiang, Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
連結:
-
[51] De Vos, W.M., G. Meijer, A. De Keizer, M.A. Cohen Stuart and J.M. Kleijn, Charge-driven and reversible assembly of ultra-dense polymer brushes: formation and antifouling properties of a zipper brush. Soft Matter, 2010. 6(11): p. 2499-2507.
連結:
-
[52] Kuo, W.-H., M.-J. Wang, H.-W. Chien, T.-C. Wei, C. Lee and W.-B. Tsai, Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules, 2011. 12(12): p. 4348-4356.
連結:
-
[53] Chang, Y., Y.J. Shih, C.J. Lai, H.H. Kung and S. Jiang, Blood‐Inert Surfaces via Ion‐Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials, 2013. 23(9): p. 1100-1110.
連結:
-
[54] Chang, Y., Y. Chang, A. Higuchi, Y.-J. Shih, P.-T. Li, W.-Y. Chen, E.-M. Tsai and G.-H. Hsiue, Bioadhesive Control of Plasma Proteins and Blood Cells from Umbilical Cord Blood onto the Interface Grafted with Zwitterionic Polymer Brushes. Langmuir, 2012. 28(9): p. 4309-4317.
連結:
-
[55] Feng, W., J.L. Brash and S. Zhu, Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion. Biomaterials, 2006. 27(6): p. 847-855.
連結:
-
[56] Nguyen, A.T., J. Baggerman, J.M.J. Paulusse, C.J.M. Van Rijn and H. Zuilhof, Stable Protein-Repellent Zwitterionic Polymer Brushes Grafted from Silicon Nitride. Langmuir, 2011. 27(6): p. 2587-2594.
連結:
-
[57] Wang, J.-S. and K. Matyjaszewski, Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 1995. 117(20): p. 5614-5615.
連結:
-
[58] Pyun, J., T. Kowalewski and K. Matyjaszewski, Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2003. 24(18): p. 1043-1059.
連結:
-
[59] Hawker, C.J., A.W. Bosman and E. Harth, New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical Reviews, 2001. 101(12): p. 3661-3688.
連結:
-
[60] Blomberg, S., S. Ostberg, E. Harth, A.W. Bosman, B. Van Horn and C.J. Hawker, Production of crosslinked, hollow nanoparticles by surface‐initiated living free‐radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(9): p. 1309-1320.
連結:
-
[61] Madruga, E.L., From classical to living/controlled statistical free-radical copolymerization. Progress in Polymer Science, 2002. 27(9): p. 1879-1924.
連結:
-
[62] Barner‐Kowollik, C., T.P. Davis, J. Heuts, M.H. Stenzel, P. Vana and M. Whittaker, RAFTing down under: Tales of missing radicals, fancy architectures, and mysterious holes. Journal of Polymer Science Part A: Polymer Chemistry, 2003. 41(3): p. 365-375.
連結:
-
[63] Husseman, M., E.E. Malmström, M. Mcnamara, M. Mate, D. Mecerreyes, D.G. Benoit, J.L. Hedrick, P. Mansky, E. Huang, T.P. Russell and C.J. Hawker, Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques. Macromolecules, 1999. 32(5): p. 1424-1431.
連結:
-
[64] Matyjaszewski, K. and J. Xia, Atom Transfer Radical Polymerization. Chemical Reviews, 2001. 101(9): p. 2921-2990.
連結:
-
[65] Ran, J., L. Wu, Z. Zhang and T. Xu, Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Progress in Polymer Science, 2014. 39(1): p. 124-144.
連結:
-
[66] Jones, D.M., A.A. Brown and W.T.S. Huck, Surface-Initiated Polymerizations in Aqueous Media: Effect of Initiator Density. Langmuir, 2002. 18(4): p. 1265-1269.
連結:
-
[67] Zhang, Z., S. Chen, Y. Chang and S. Jiang, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. The Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804.
連結:
-
[68] Edmondson, S., V.L. Osborne and W.T. Huck, Polymer brushes via surface-initiated polymerizations. Chemical society reviews, 2004. 33(1): p. 14-22.
連結:
-
[69] Kooyman, R.P., Physics of surface plasmon resonance. Handbook of Surface Plasmon Resonance, 2008. 1(p.
連結:
-
[70] Homola, J., S.S. Yee and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1–2): p. 3-15.
連結:
-
[71] Kretschmann, E. and H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135-2136.
連結:
-
[72] Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik, 216(4): p. 398-410.
連結:
-
[73] Lukosz, W. and K. Tiefenthaler, Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Opt. Lett., 1983. 8(10): p. 537-539.
連結:
-
[74] Lin, K., Y. Lu, J. Chen, R. Zheng, P. Wang and H. Ming, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt. Express, 2008. 16(23): p. 18599-18604.
連結:
-
[75] Cai, D., Y. Lu, K. Lin, P. Wang and H. Ming, Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt. Express, 2008. 16(19): p. 14597-14602.
連結:
-
[76] Liedberg, B., C. Nylander and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983. 4(p. 299-304.
連結:
-
[77] Rodriguez-Emmenegger, C., E. Brynda, T. Riedel, M. Houska, V. Šubr, A.B. Alles, E. Hasan, J.E. Gautrot and W.T.S. Huck, Polymer Brushes Showing Non-Fouling in Blood Plasma Challenge the Currently Accepted Design of Protein Resistant Surfaces. Macromolecular Rapid Communications, 2011. 32(13): p. 952-957.
連結:
-
[78] Kooyman, R.P.H., H. Kolkman, J. Van Gent and J. Greve, Surface plasmon resonance immunosensors: sensitivity considerations. Analytica Chimica Acta, 1988. 213(p. 35-45.
連結:
-
[79] Tong, L., H. Wei, S. Zhang and H. Xu, Recent Advances in Plasmonic Sensors. Sensors (Basel, Switzerland), 2014. 14(5): p. 7959-7973.
連結:
-
[80] El-Hamshary, H., M. El-Garawany, F.N. Assubaie and M. Al-Eed, Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. Journal of Applied Polymer Science, 2003. 89(9): p. 2522-2526.
連結:
-
[81] Rivas, B.L., B. Quilodrán and E. Quiroz, Trace metal ion retention properties of crosslinked poly(4-vinylpyridine) and poly(acrylic acid). Journal of Applied Polymer Science, 2004. 92(5): p. 2908-2916.
連結:
-
[82] Caruso, U., A. De Maria, B. Panunzi and A. Roviello, Poly (4‐vinylpyridine) as the host ligand of metal‐containing chromophores for second‐order nonlinear optical active materials. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(17): p. 2987-2993.
連結:
-
[83] Caruso, U., R. Centore, B. Panunzi, A. Roviello and A. Tuzi, Grafting Poly(4-vinylpyridine) with a Second-Order Nonlinear Optically Active Nickel(II) Chromophore. European Journal of Inorganic Chemistry, 2005. 2005(13): p. 2747-2753.
連結:
-
[84] Harnish, B., J.T. Robinson, Z. Pei, O. Ramström and M. Yan, UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces. Chemistry of Materials, 2005. 17(16): p. 4092-4096.
連結:
-
[85] Li, D., Q. He, Y. Yang, H. Möhwald and J. Li, Two-Stage pH Response of Poly(4-vinylpyridine) Grafted Gold Nanoparticles. Macromolecules, 2008. 41(19): p. 7254-7256.
連結:
-
[86] Li, D., Y.J. Jang, J. Lee, J.-E. Lee, S.T. Kochuveedu and D.H. Kim, Grafting poly(4-vinylpyridine) onto gold nanorods toward functional plasmonic core-shell nanostructures. Journal of Materials Chemistry, 2011. 21(41): p. 16453-16460.
連結:
-
[87] Li, D., Q. He, Y. Cui and J. Li, Fabrication of pH-Responsive Nanocomposites of Gold Nanoparticles/Poly(4-vinylpyridine). Chemistry of Materials, 2007. 19(3): p. 412-417.
連結:
-
[88] Lee, J.-E., K. Chung, Y.H. Jang, Y.J. Jang, S.T. Kochuveedu, D. Li and D.H. Kim, Bimetallic Multifunctional Core@Shell Plasmonic Nanoparticles for Localized Surface Plasmon Resonance Based Sensing and Electrocatalysis. Analytical Chemistry, 2012. 84(15): p. 6494-6500.
連結:
-
[89] Li, Y., M.J. Yang and Y. She, Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate). Sensors and Actuators B: Chemical, 2005. 107(1): p. 252-257.
連結:
-
[90] Tiller, J.C., S.B. Lee, K. Lewis and A.M. Klibanov, Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and Bioengineering, 2002. 79(4): p. 465-471.
連結:
-
[91] Laschewsky, A., Structures and synthesis of zwitterionic polymers. Polymers, 2014. 6(5): p. 1544-1601.
連結:
-
[92] Wendler, U., J. Bohrisch, W. Jaeger, G. Rother and H. Dautzenberg, Amphiphilic cationic block copolymers via controlled free radical polymerization. Macromolecular Rapid Communications, 1998. 19(4): p. 185-190.
連結:
-
[93] Jaeger, W., U. Wendler, A. Lieske and J. Bohrisch, Novel Modified Polymers with Permanent Cationic Groups. Langmuir, 1999. 15(12): p. 4026-4032.
連結:
-
[94] Wang, J., Y. Zong, R. Fu, Y. Niu, G. Yue, Z. Quan, X. Wang and Y. Pan, Poly(4-vinylpyridine) supported acidic ionic liquid: A novel solid catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones under ultrasonic irradiation. Ultrasonics Sonochemistry, 2014. 21(1): p. 29-34.
連結:
-
[95] Gui, Z., J. Qian, Q. An, H. Xu and Q. Zhao, Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. European Polymer Journal, 2009. 45(5): p. 1403-1411.
連結:
-
[96] Shafi, H.Z., Z. Khan, R. Yang and K.K. Gleason, Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination, 2015. 362(p. 93-103.
連結:
-
[97] Venault, A., K.M. Trinh and Y. Chang, A zwitterionic zP(4VP-r-ODA) copolymer for providing polypropylene membranes with improved hemocompatibility. Journal of Membrane Science, 2016. 501(p. 68-78.
連結:
-
[98] Chen, S., J. Zheng, L. Li and S. Jiang, Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption: Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
連結:
-
[99] Jung, L.S., C.T. Campbell, T.M. Chinowsky, M.N. Mar and S.S. Yee, Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films. Langmuir, 1998. 14(19): p. 5636-5648.
連結:
-
[101] Mondal, P., S. Saha and P. Chowdhury, Simultaneous polymerization and quaternization of 4‐vinyl pyridine. Journal of Applied Polymer Science, 2013. 127(6): p. 5045-5050.
連結:
-
[103] Owens, D.K. and R. Wendt, Estimation of the surface free energy of polymers. Journal of applied polymer science, 1969. 13(8): p. 1741-1747.
連結:
-
[21] Abuchowski, A., T. Van Es, N. Palczuk and F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-3581.
-
[32] Zwaal, R.F.A. and A.J. Schroit, Pathophysiologic Implications of Membrane Phospholipid Asymmetry in Blood Cells. Blood, 1997. 89(4): p. 1121-1132.
-
[33] 門磨, 義., 宣. 中林, 英. 増原 and 淳. 山内, ホスホリルコリン基を有するポリマーの合成と溶血性. 高分子論文集, 1978. 35(7): p. 423-427.
-
[100] Sahiner, N., A facile method for the preparation of poly (4-vinylpyridine) nanoparticles and their characterization. Turkish Journal of Chemistry, 2009. 33(1): p. 23-31.
-
[102] Rabel, W., Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack, 1971. 77(10): p. 997-1006.
|