题名

以魚鱗為原料合成氫氧基磷灰石多孔材料應用於生醫領域及重金屬吸附功能之研究

并列篇名

Synthesis of Hydroxyapatite Scaffolds from Fish Scales for Biomedical Engineering and Heavy Metal Ion Removal

作者

劉文光

关键词

魚鱗 ; 冷凍鑄造法 ; 細胞毒性 ; 金屬離子吸附 ; fish scale ; freeze casting ; tissue engineering ; heavy metal removal

期刊名称

清華大學材料科學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳柏宇

内容语文

英文

中文摘要

氫氧基磷灰石(Hydroxyapatite)已被廣泛研究多年,主要應用於骨修復材料或作為吸附材移除水中的重金屬離子。魚鱗是含氫氧基磷灰石的天然複合材料,是便宜且環保的氫氧基磷灰石來源。本研究將萃取魚鱗粉中的氫氧基磷灰石,並透過X光繞射儀(XRD)及能量散佈分析儀(EDS)分析其晶相及元素成分。再利用冷凍鑄造法(Freeze Casting)將魚鱗粉合成多孔材料,並且探討此多孔材料的性質及可能之應用。透過掃描式電子顯微鏡(SEM)下的觀察,證實了此材料具有序層狀多孔結構,而孔洞的大小及孔隙率則可以利用冷卻鑄造法中的諸多參數去調控。此外,此多孔材料的機械性質以壓應力測試法量測,並優化合成參數,得到具有足夠機械強度且提供高孔隙及表面積的多孔材料。在未來應用研究方面,首先,透過細胞存活率實驗(MTS Assay),此多孔材料的細胞毒性被初步測試,證實魚鱗粉製成的多孔陶瓷材料不具細胞毒性,可作為用於生醫領域的前瞻研究之參考;此外,考量氫氧基磷灰石的金屬離子吸附能力,本研究以鉛離子作為測試指標,測量魚鱗粉的金屬離子吸附能力,並利用不同等溫線模型探討其吸附能力。此多孔氫氧基磷灰石具優異的吸附能力,能在短時間內可以大量移除水溶液中的鉛離子。雖然魚鱗普遍被認為是漁業廢棄物,但透過本研究,我們期望未來魚鱗能成為低廉、環保、高附加價值且多功能的材料並應用於不同領域。

英文摘要

The hydroxyapatite has been extensively investigated with respect to its potential for bone tissue engineering and removal of heavy metal ions from aqueous solutions. Fish scales are a natural source for calcium phosphate source though considered as wastes in daily life. In this study, hydroxyapatite was extracted and obtained from scales of Tilapia fish (Oreochromis mossambicus). The mineral was confirmed to be hydroxyapatite by X-ray diffraction and energy dispersive spectrometry. The hydroxyapatite powders obtained from fish scales was used as raw materials and scaffolds were synthesized by the freeze casting technique. The well aligned laminar structures with 10-80 μm channels was revealed by SEM, meanwhile, the pore size can be controlled by tuning cooling rates. It is able to synthesize scaffolds with microstructure mimicking cancellous bone, which exhibit good mechanical strength. The cell proliferation test was done by culturing human osteoblast cells within the scaffolds, and cell viability was evaluated by the MTS assay. Histological evaluation was carried out to characterize the cell ingrowth. Results confirmed that the scaffolds were not cytotoxic. Additionally, hydroxyapatite has good ability to remove heavy ions in water. We chose lead ion as indicator to test the sorption ability, and used isotherm models to describe the sorption behavior. From Atomic Absorption Spectrometer (AAS) analysis, the scaffolds eliminated 99% of lead ion in a short time, providing efficient capability of heavy metal ions removal. Inexpensive fish scales can be utilized to synthesize hydroxyapatite scaffolds by freeze casting and have great potential to be applied in various fields.

主题分类 工學院 > 材料科學工程學系
工程學 > 工程學總論
参考文献
  1. [1] M. A. Meyers and P.-Y. Chen, Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials: Cambridge University Press, 2014.
    連結:
  2. [2] P.-Y. Chen, A. Lin, Y.-S. Lin, Y. Seki, A. Stokes, J. Peyras, et al., "Structure and mechanical properties of selected biological materials," Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, pp. 208-226, 2008.
    連結:
  3. [3] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, "Biological materials: Structure and mechanical properties," Progress in Materials Science, vol. 53, pp. 1-206, 2008.
    連結:
  4. [4] M. F. Ashby and R. M. Medalist, "The mechanical properties of cellular solids," Metallurgical Transactions A, vol. 14, pp. 1755-1769, 1983.
    連結:
  5. [5] U. G. K. Wegst and M. F. Ashby, "The mechanical efficiency of natural materials," Philosophical Magazine, vol. 84, pp. 2167-2186, 2004.
    連結:
  6. [6] M. F. Ashby, "The properties of foams and lattices," Philos Trans A Math Phys Eng Sci, vol. 364, pp. 15-30, Jan 15 2006.
    連結:
  7. [7] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, et al., "Hydrogen storage in microporous metal-organic frameworks," Science, vol. 300, pp. 1127-1129, 2003.
    連結:
  8. [8] G. J. d. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, "Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures," Chemical reviews, vol. 102, pp. 4093-4138, 2002.
    連結:
  9. [9] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, "Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids," Journal of the American Chemical Society, vol. 104, pp. 1146-1147, 1982.
    連結:
  10. [10] J. Y. Ying, C. P. Mehnert, and M. S. Wong, "Synthesis and applications of supramolecular‐templated mesoporous materials," Angewandte Chemie International Edition, vol. 38, pp. 56-77, 1999.
    連結:
  11. [11] A. Imhof and D. Pine, "Ordered macroporous materials by emulsion templating," Nature, vol. 389, pp. 948-951, 1997.
    連結:
  12. [12] S. Pezzatini, R. Solito, L. Morbidelli, S. Lamponi, E. Boanini, A. Bigi, et al., "The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions," J Biomed Mater Res A, vol. 76, pp. 656-63, Mar 1 2006.
    連結:
  13. [13] S. Teixeira, M. P. Ferraz, and F. J. Monteiro, "Biocompatibility of highly macroporous ceramic scaffolds: cell adhesion and morphology studies," J Mater Sci Mater Med, vol. 19, pp. 855-9, Feb 2008.
    連結:
  14. [14] T. Kawasaki, "Hydroxyapatite as a liquid chromatographic packing," Journal of Chromatography A, vol. 544, pp. 147-184, 1991.
    連結:
  15. [15] R.-B. Suen, S.-C. Lin, and W.-H. Hsu, "Hydroxyapatite-based immobilized metal affinity adsorbents for protein purification," Journal of Chromatography A, vol. 1048, pp. 31-39, 2004.
    連結:
  16. [16] J. W. Shen, T. Wu, Q. Wang, and H. H. Pan, "Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces," Biomaterials, vol. 29, pp. 513-32, Feb 2008.
    連結:
  17. [17] S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien, and S. Chanthai, "Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution," Chemical Engineering Journal, vol. 215-216, pp. 522-532, 2013.
    連結:
  18. [18] J. Reichert and J. Binner, "An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions," Journal of Materials Science, vol. 31, pp. 1231-1241, 1996.
    連結:
  19. [19] H. Zhou and J. Lee, "Nanoscale hydroxyapatite particles for bone tissue engineering," Acta Biomater, vol. 7, pp. 2769-81, Jul 2011.
    連結:
  20. [20] G. Daculsi, "Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute," Biomaterials, vol. 19, pp. 1473-1478, 1998.
    連結:
  21. [21] X. Zhao, S. Ng, B. C. Heng, J. Guo, L. Ma, T. T. Tan, et al., "Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent," Arch Toxicol, vol. 87, pp. 1037-52, Jun 2013.
    連結:
  22. [22] C. Laurencin, M. Attawia, L. Lu, M. Borden, H. Lu, W. Gorum, et al., "Poly (lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: a regional gene therapy approach to bone regeneration," Biomaterials, vol. 22, pp. 1271-1277, 2001.
    連結:
  23. [23] G. Socol, A. M. Macovei, F. Miroiu, N. Stefan, L. Duta, G. Dorcioman, et al., "Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications," Materials Science and Engineering: B, vol. 169, pp. 159-168, 2010.
    連結:
  24. [25] K. Kuroda and M. Okido, "Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity," Bioinorg Chem Appl, vol. 2012, p. 730693, 2012.
    連結:
  25. [27] V. Karageorgiou and D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, vol. 26, pp. 5474-91, Sep 2005.
    連結:
  26. [28] G. S. Han, S. Lee, D. W. Kim, D. H. Kim, J. H. Noh, J. H. Park, et al., "A Simple Method To Control Morphology of Hydroxyapatite Nano- and Microcrystals by Altering Phase Transition Route," Crystal Growth & Design, vol. 13, pp. 3414-3418, 2013.
    連結:
  27. [29] M. Ferraz, F. Monteiro, and C. Manuel, "Hydroxyapatite nanoparticles: a review of preparation methodologies," Journal of Applied Biomaterials and Biomechanics, vol. 2, pp. 74-80, 2004.
    連結:
  28. [30] I. S. Neira, Y. V. Kolen’ko, O. I. Lebedev, G. Van Tendeloo, H. S. Gupta, F. Guitián, et al., "An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis," Crystal Growth and Design, vol. 9, pp. 466-474, 2008.
    連結:
  29. [31] X. Zhang and K. S. Vecchio, "Hydrothermal synthesis of hydroxyapatite rods," Journal of Crystal Growth, vol. 308, pp. 133-140, 2007.
    連結:
  30. [32] S. K. Padmanabhan, A. Balakrishnan, M.-C. Chu, Y. J. Lee, T. N. Kim, and S.-J. Cho, "Sol–gel synthesis and characterization of hydroxyapatite nanorods," Particuology, vol. 7, pp. 466-470, 2009.
    連結:
  31. [33] D.-M. Liu, T. Troczynski, and W. J. Tseng, "Water-based sol–gel synthesis of hydroxyapatite: process development," Biomaterials, vol. 22, pp. 1721-1730, 2001.
    連結:
  32. [34] D. M. Roy and S. K. Linnehan, "Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange," 1974.
    連結:
  33. [35] J. Rocha, A. Lemos, S. Agathopoulos, S. Kannan, P. Valerio, and J. Ferreira, "Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones," Journal of Biomedical Materials Research Part A, vol. 77, pp. 160-168, 2006.
    連結:
  34. [36] S. Mondal, B. Mondal, A. Dey, and S. S. Mukhopadhyay, "Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes," Journal of Minerals and Materials Characterization and Engineering, vol. 11, p. 55, 2012.
    連結:
  35. [37] N. N. Panda, K. Pramanik, and L. B. Sukla, "Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold," Bioprocess Biosyst Eng, vol. 37, pp. 433-40, Mar 2014.
    連結:
  36. [38] Y.-C. Huang, P.-C. Hsiao, and H.-J. Chai, "Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells," Ceramics International, vol. 37, pp. 1825-1831, 2011.
    連結:
  37. [39] S. Mondal, R. Bardhan, B. Mondal, A. Dey, S. S. Mukhopadhyay, S. Roy, et al., "Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application," Bulletin of Materials Science, vol. 35, pp. 683-691, 2012.
    連結:
  38. [40] M. Ozawa and S. Suzuki, "Microstructural development of natural hydroxyapatite originated from fish‐bone waste through heat treatment," Journal of the American Ceramic Society, vol. 85, pp. 1315-1317, 2002.
    連結:
  39. [41] C. Y. Huang, J. M. Kuo, S. J. Wu, and H. T. Tsai, "Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process," Food Chem, vol. 190, pp. 997-1006, Jan 1 2016.
    連結:
  40. [42] Z. Fang, Y. Wang, Q. Feng, A. Kienzle, and W. E. Muller, "Hierarchical structure and cytocompatibility of fish scales from Carassius auratus," Mater Sci Eng C Mater Biol Appl, vol. 43, pp. 145-52, Oct 2014.
    連結:
  41. [43] C. Meneghini, M. C. Dalconi, S. Nuzzo, S. Mobilio, and R. H. Wenk, "Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones," Biophysical journal, vol. 84, pp. 2021-2029, 2003.
    連結:
  42. [44] S. Weiner and H. D. Wagner, "The material bone: structure-mechanical function relations," Annual Review of Materials Science, vol. 28, pp. 271-298, 1998.
    連結:
  43. [48] J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, "Mechanical properties and the hierarchical structure of bone," Medical engineering & physics, vol. 20, pp. 92-102, 1998.
    連結:
  44. [49] S. Tadano and B. Giri, "X-ray diffraction as a promising tool to characterize bone nanocomposites," Science and Technology of Advanced Materials, vol. 12, p. 064708, 2016.
    連結:
  45. [50] D. M. Cooper, J. R. Matyas, M. A. Katzenberg, and B. Hallgrimsson, "Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity," Calcif Tissue Int, vol. 74, pp. 437-47, May 2004.
    連結:
  46. [51] H. Maass, "Mechanical interference of bone development," Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medicin, vol. 103(2), pp. 185-208, 1901.
    連結:
  47. [53] R. Martin, S. Lau, P. Mathews, V. Gibson, and S. Stover, "Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparsion of two methods," Journal of biomechanics, vol. 29, pp. 1515-1521, 1996.
    連結:
  48. [54] J. G. Skedros, S. M. Sorenson, Y. Takano, and C. H. Turner, "Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei," Bone, vol. 39, pp. 143-151, 2006.
    連結:
  49. [55] T. Iyo, Y. Maki, N. Sasaki, and M. Nakata, "Anisotropic viscoelastic properties of cortical bone," Journal of Biomechanics, vol. 37, pp. 1433-1437, 2004.
    連結:
  50. [56] P. Y. Chen, D. Toroian, P. A. Price, and J. McKittrick, "Minerals form a continuum phase in mature cancellous bone," Calcif Tissue Int, vol. 88, pp. 351-61, May 2011.
    連結:
  51. [57] P. Y. Chen and J. McKittrick, "Compressive mechanical properties of demineralized and deproteinized cancellous bone," J Mech Behav Biomed Mater, vol. 4, pp. 961-73, Oct 2011.
    連結:
  52. [59] T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh, and S. Mann, "Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major," Journal of Structural Biology, vol. 142, pp. 327-333, 2003.
    連結:
  53. [60] Y. S. Lin, C. T. Wei, E. A. Olevsky, and M. A. Meyers, "Mechanical properties and the laminate structure of Arapaima gigas scales," J Mech Behav Biomed Mater, vol. 4, pp. 1145-56, 2011.
    連結:
  54. [61] M. A. Meyers, Y. S. Lin, E. A. Olevsky, and P. Y. Chen, "Battle in the Amazon: Arapaima versus Piranha," Advanced Engineering Materials, vol. 14, pp. B279-B288, 2012.
    連結:
  55. [63] L. Wang, X. An, F. Yang, Z. Xin, L. Zhao, and Q. Hu, "Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella)," Food Chem, vol. 108, pp. 616-23, May 15 2008.
    連結:
  56. [64] T. Nagai and N. Suzuki, "Isolation of collagen from fish waste material—skin, bone and fins," Food Chemistry, vol. 68, pp. 277-281, 2000.
    連結:
  57. [65] F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, "Preparation and Characterisation of Collagen from Freshwater Fish Scales," Food and Nutrition Sciences, vol. 02, pp. 818-823, 2011.
    連結:
  58. [66] T. H. van Essen, C. C. Lin, A. K. Hussain, S. Maas, H. J. Lai, H. Linnartz, et al., "A fish scale-derived collagen matrix as artificial cornea in rats: properties and potential," Invest Ophthalmol Vis Sci, vol. 54, pp. 3224-33, May 2013.
    連結:
  59. [67] C. C. Lin, R. Ritch, S. M. Lin, M.-H. Ni, Y.-C. Chang, Y. L. Lu, et al., "A new fish scale-derived scaffold for corneal regeneration," Eur Cell Mater, vol. 19, pp. 50-57, 2010.
    連結:
  60. [68] S. Mondal, S. Mahata, S. Kundu, and B. Mondal, "Processing of natural resourced hydroxyapatite ceramics from fish scale," Advances in Applied Ceramics, vol. 109, pp. 234-239, 2010.
    連結:
  61. [69] H. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, and A. I. Cooper, "Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles," Nat Mater, vol. 4, pp. 787-93, Oct 2005.
    連結:
  62. [71] S. Deville, "Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues," Advanced Engineering Materials, vol. 10, pp. 155-169, 2008.
    連結:
  63. [72] C. Körber, G. Rau, M. Cosman, and E. Cravalho, "Interaction of particles and a moving ice-liquid interface," Journal of crystal growth, vol. 72, pp. 649-662, 1985.
    連結:
  64. [73] R. Asthana and S. Tewari, "The engulfment of foreign particles by a freezing interface," Journal of materials science, vol. 28, pp. 5414-5425, 1993.
    連結:
  65. [74] D. R. Uhlmann, B. Chalmers, and K. A. Jackson, "Interaction Between Particles and a Solid-Liquid Interface," Journal of Applied Physics, vol. 35, p. 2986, 1964.
    連結:
  66. [75] G. Bolling and J. Cisse, "A theory for the interaction of particles with a solidifying front," Journal of Crystal Growth, vol. 10, pp. 56-66, 1971.
    連結:
  67. [76] D. Stefanescu, B. Dhindaw, S. Kacar, and A. Moitra, "Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites," Metallurgical Transactions A, vol. 19, pp. 2847-2855, 1988.
    連結:
  68. [79] H. Tong and C. Gryte, "Mechanism of lamellar spacing adjustment in directionally frozen agar gels," Colloid and Polymer Science, vol. 263, pp. 147-155, 1985.
    連結:
  69. [80] H. Schoof, L. Bruns, A. Fischer, I. Heschel, and G. Rau, "Dendritic ice morphology in unidirectionally solidified collagen suspensions," Journal of crystal growth, vol. 209, pp. 122-129, 2000.
    連結:
  70. [81] H. Schoof, J. Apel, I. Heschel, and G. Rau, "Control of pore structure and size in freeze‐dried collagen sponges," Journal of biomedical materials research, vol. 58, pp. 352-357, 2001.
    連結:
  71. [82] M. M. Porter, J. McKittrick, and M. A. Meyers, "Biomimetic Materials by Freeze Casting," Jom, vol. 65, pp. 720-727, 2013.
    連結:
  72. [83] Y. Chino and D. C. Dunand, "Directionally freeze-cast titanium foam with aligned, elongated pores," Acta Materialia, vol. 56, pp. 105-113, 2008.
    連結:
  73. [84] S. Deville, E. Saiz, and A. P. Tomsia, "Freeze casting of hydroxyapatite scaffolds for bone tissue engineering," Biomaterials, vol. 27, pp. 5480-9, Nov 2006.
    連結:
  74. [85] Q. Fu, M. N. Rahaman, F. Dogan, and B. S. Bal, "Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications," Biomed Mater, vol. 3, p. 025005, Jun 2008.
    連結:
  75. [86] E.-J. Lee, Y.-H. Koh, B.-H. Yoon, H.-E. Kim, and H.-W. Kim, "Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting," Materials Letters, vol. 61, pp. 2270-2273, 2007.
    連結:
  76. [87] B.-H. Yoon, C.-S. Park, H.-E. Kim, and Y.-H. Koh, "In-situ fabrication of porous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry," Materials Letters, vol. 62, pp. 1700-1703, 2008.
    連結:
  77. [88] S. Deville, "Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities," Materials, vol. 3, pp. 1913-1927, 2010.
    連結:
  78. [89] A. Ojuva, M. Järveläinen, M. Bauer, L. Keskinen, M. Valkonen, F. Akhtar, et al., "Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting," Journal of the European Ceramic Society, vol. 35, pp. 2607-2618, 2015.
    連結:
  79. [90] L. L. da Silva and F. Galembeck, "Morphology of latex and nanocomposite adsorbents prepared by freeze-casting," J. Mater. Chem. A, vol. 3, pp. 7263-7272, 2015.
    連結:
  80. [91] Y. Zhang, K. Zuo, and Y.-P. Zeng, "Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics," Ceramics International, vol. 35, pp. 2151-2154, 2009.
    連結:
  81. [92] A. Macchetta, I. G. Turner, and C. R. Bowen, "Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method," Acta Biomater, vol. 5, pp. 1319-27, May 2009.
    連結:
  82. [93] H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, et al., "Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method," Adv Mater, vol. 28, pp. 50-6, Jan 6 2016.
    連結:
  83. [94] D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, and Y. F. Missirlis, "Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength," Biomaterials, vol. 22, pp. 87-96, 2000.
    連結:
  84. [95] D. Wahl and J. Czernuszka, "Collagen-hydroxyapatite composites for hard tissue repair," Eur Cell Mater, vol. 11, pp. 43-56, 2006.
    連結:
  85. [96] J. M. Oliveira, M. T. Rodrigues, S. S. Silva, P. B. Malafaya, M. E. Gomes, C. A. Viegas, et al., "Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells," Biomaterials, vol. 27, pp. 6123-37, Dec 2006.
    連結:
  86. [97] O. Gauthier, J.-M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, "Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth," Biomaterials, vol. 19, pp. 133-139, 1998.
    連結:
  87. [98] Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, et al., "Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents," Chemical Engineering Journal, vol. 162, pp. 487-494, 2010.
    連結:
  88. [99] I. Mobasherpour, E. Salahi, and M. Pazouki, "Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite," Journal of Saudi Chemical Society, vol. 15, pp. 105-112, 2011.
    連結:
  89. [100] J. G. del Rio, P. Sanchez, P. J. Morando, and D. S. Cicerone, "Retention of Cd, Zn and Co on hydroxyapatite filters," Chemosphere, vol. 64, pp. 1015-20, Aug 2006.
    連結:
  90. [101] Q. Y. Ma, S. J. Traina, T. J. Logan, and J. A. Ryan, "Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite," Environmental Science & Technology, vol. 28, pp. 1219-1228, 1994.
    連結:
  91. [103] Y. Takeuchi, T. Suzuki, and H. Arai, "A study of equilibrium and mass transfer in processes for removal of heavy-metal ions by hydroxyapatite," Journal of Chemical Engineering of Japan, vol. 21, pp. 98-100, 1988.
    連結:
  92. [104] H. Xu, L. Yang, P. Wang, Y. Liu, and M. Peng, "Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite," J Environ Manage, vol. 86, pp. 319-28, Jan 2008.
    連結:
  93. [105] I. Smiciklas, A. Onjia, S. Raicevic, D. Janackovic, and M. Mitric, "Factors influencing the removal of divalent cations by hydroxyapatite," J Hazard Mater, vol. 152, pp. 876-84, Apr 1 2008.
    連結:
  94. [106] S. Suzuki, K. Itoh, M. Ohgaki, M. Ohtani, and M. Ozawa, "Preparation of sintered filter for ion exchange by a doctor blade method with aqueous slurries of needlelike hydroxyapatite," Ceramics international, vol. 25, pp. 287-291, 1999.
    連結:
  95. [107] Y. Lei, W. Chen, B. Lu, Q.-F. Ke, and Y.-P. Guo, "Bioinspired fabrication and lead adsorption property of nano-hydroxyapatite/chitosan porous materials," RSC Adv., vol. 5, pp. 98783-98795, 2015.
    連結:
  96. [108] S. Park, A. Gomez-Flores, Y. S. Chung, and H. Kim, "Removal of Cadmium and Lead from Aqueous Solution by Hydroxyapatite/Chitosan Hybrid Fibrous Sorbent: Kinetics and Equilibrium Studies," Journal of Chemistry, vol. 2015, pp. 1-12, 2015.
    連結:
  97. [109] S. M. Mousa, N. S. Ammar, and H. A. Ibrahim, "Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste," Journal of Saudi Chemical Society, vol. 20, pp. 357-365, 2016.
    連結:
  98. [110] M. A. Hayat, Principles and techniques of scanning electron microscopy. Biological applications. Volume 1: Van Nostrand Reinhold Company., 1974.
    連結:
  99. [113] J. H. G. Rocha, A. F. Lemos, S. Kannan, S. Agathopoulos, and J. M. F. Ferreira, "Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones," Journal of Materials Chemistry, vol. 15, p. 5007, 2005.
    連結:
  100. [115] P. B. Roese, S. C. Amico, and W. Kindlein Júnior, "Thermal and microestructural characterization of epoxy-infiltrated hydroxyapatite composite," Materials Research, vol. 12, pp. 107-111, 2009.
    連結:
  101. [116] F. Peters, K. Schwarz, and M. Epple, "The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis," Thermochimica Acta, vol. 361, pp. 131-138, 2000.
    連結:
  102. [117] E. F. Kaelble, "Handbook of X-rays: for diffraction, emission, absorption, and microscopy," 1967.
    連結:
  103. [118] L. Bonar, A. Roufosse, W. Sabine, M. Grynpas, and M. Glimcher, "X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone," Calcified tissue international, vol. 35, pp. 202-209, 1983.
    連結:
  104. [119] Z. Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J. Z. Jiang, et al., "Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation," Acta Biomater, vol. 6, pp. 2816-25, Jul 2010.
    連結:
  105. [121] M. P. Casaletto, S. Kaciulis, G. Mattogno, A. Mezzi, L. Ambrosio, and F. Branda, "XPS characterization of biocompatible hydroxyapatite-polymer coatings," Surface and Interface Analysis, vol. 34, pp. 45-49, 2002.
    連結:
  106. [122] G. Muralithran and S. Ramesh, "The effects of sintering temperature on the properties of hydroxyapatite," Ceramics International, vol. 26, pp. 221-230, 2000.
    連結:
  107. [123] M. K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, M. W. Wildan, and J. A. Toque, "The influence of sintering temperature on the properties of compacted bovine hydroxyapatite," Materials Science and Engineering: C, vol. 29, pp. 1674-1680, 2009.
    連結:
  108. [124] B.-H. Yoon, Y.-H. Koh, C.-S. Park, and H.-E. Kim, "Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based Freeze Casting," Journal of the American Ceramic Society, vol. 90, pp. 1744-1752, 2007.
    連結:
  109. [126] X. Fan, E. D. Case, I. Gheorghita, and M. J. Baumann, "Weibull modulus and fracture strength of highly porous hydroxyapatite," J Mech Behav Biomed Mater, vol. 20, pp. 283-95, Apr 2013.
    連結:
  110. [127] X. Fan, E. D. Case, F. Ren, Y. Shu, and M. J. Baumann, "Part I: porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials," J Mech Behav Biomed Mater, vol. 8, pp. 21-36, Apr 2012.
    連結:
  111. [128] R. Alexander and L. Theodos, "Fracture of the bone-grafted mandible secondary to stress shielding: Report of a case and review of the literature," Journal of oral and maxillofacial surgery, vol. 51, pp. 695-697, 1993.
    連結:
  112. [129] M. B. Desta, "Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste," Journal of Thermodynamics, vol. 2013, pp. 1-6, 2013.
    連結:
  113. [130] A. Corami, S. Mignardi, and V. Ferrini, "Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite," J Colloid Interface Sci, vol. 317, pp. 402-8, Jan 15 2008.
    連結:
  114. [131] S. Bailliez, A. Nzihou, E. Bèche, and G. Flamant, "Removal of Lead (Pb) by Hydroxyapatite Sorbent," Process Safety and Environmental Protection, vol. 82, pp. 175-180, 2004.
    連結:
  115. [132] S.-l. Yang, Z.-H. Wu, W. Yang, and M.-B. Yang, "Thermal and mechanical properties of chemical crosslinked polylactide (PLA)," Polymer Testing, vol. 27, pp. 957-963, 2008.
    連結:
  116. [133] F. Croisier and C. Jérôme, "Chitosan-based biomaterials for tissue engineering," European Polymer Journal, vol. 49, pp. 780-792, 2013.
    連結:
  117. [24] W. Lacefield, "Hydroxyapatite coatings," Annals of the New York academy of sciences, vol. 523, pp. 72-80, 1988.
  118. [26] E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn, and A. P. Tomsia, "Preparation of porous hydroxyapatite scaffolds," Materials Science and Engineering: C, vol. 27, pp. 546-550, 2007.
  119. [45] M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Y.-Y. Kim, M. J. Kaufman, et al., "Bone structure and formation: A new perspective," Materials Science and Engineering: R: Reports, vol. 58, pp. 77-116, 2007.
  120. [46] V. Orlovskii, V. Komlev, and S. Barinov, "Hydroxyapatite and hydroxyapatite-based ceramics," Inorganic Materials, vol. 38, pp. 973-984, 2002.
  121. [47] J. McKittrick, P. Y. Chen, L. Tombolato, E. E. Novitskaya, M. W. Trim, G. A. Hirata, et al., "Energy absorbent natural materials and bioinspired design strategies: A review," Materials Science and Engineering: C, vol. 30, pp. 331-342, 2010.
  122. [52] D. T. Reilly, A. H. Burstein, and V. H. Frankel, "The elastic modulus for bone," Journal of biomechanics, vol. 7, pp. 271-275, 1974.
  123. [58] W. Yang, I. H. Chen, B. Gludovatz, E. A. Zimmermann, R. O. Ritchie, and M. A. Meyers, "Natural flexible dermal armor," Adv Mater, vol. 25, pp. 31-48, Jan 4 2013.
  124. [62] L. Zylberberg, J. Bonaventure, L. Cohen-Solal, D. Hartmann, and J. Bereiterhahn, "Organization and characterization of fibrillar collagens in fish scales in situ and in vitro," Journal of cell science, vol. 103, pp. 273-285, 1992.
  125. [70] U. G. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, "Biomaterials by freeze casting," Philos Trans A Math Phys Eng Sci, vol. 368, pp. 2099-121, Apr 28 2010.
  126. [77] O. Bobertag, K. Feist, and H. Fischer, "Über das Ausfrieren von Hydrosolen," Berichte der deutschen chemischen Gesellschaft, vol. 41, pp. 3675-3679, 1908.
  127. [78] W. Maxwell, R. Gurnick, and A. Francisco, "Preliminary Investigation of the'freeze-casting'Method for Forming Refractory Powders," 1954.
  128. [102] Q. Y. Ma, S. J. Traina, T. J. Logan, and J. A. Ryan, "In situ lead immobilization by apatite," Environmental Science & Technology, vol. 27, pp. 1803-1810, 1993.
  129. [111] J. K. Morris, "A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy," J. cell. Biol, vol. 27, p. 137, 1965.
  130. [112] K. Varma, "Morphology and dielectric properties of fish scales," Current science, vol. 59, pp. 420-422, 1990.
  131. [114] D. Ding, C. W. Kanaly, T. J. Cummings, J. E. Herndon, 2nd, R. Raghavan, and J. H. Sampson, "Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321," Neurol Res, vol. 32, pp. 810-5, Oct 2010.
  132. [120] H.-Y. Shin, J.-Y. Jung, S.-W. Kim, and W.-K. Lee, "XPS analysis on chemical properties of calcium phosphate thin films and osteoblastic hos cell responses," Journal of Industrial and Engineering Chemistry, vol. 12, pp. 476-483, 2006.
  133. [125] M. M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, et al., "Magnetic freeze casting inspired by nature," Materials Science and Engineering: A, vol. 556, pp. 741-750, 2012.