参考文献
|
-
2. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
連結:
-
3. Van Noorden, R., The rechargeable revolution: A better battery. Nature, 2014. 507(7490): p. 26-28.
連結:
-
4. Bruce, P.G., et al., Li-O2 and Li-S batteries with high energy storage. Nature materials, 2012. 11(1): p. 19-29.
連結:
-
5. Li, N., et al., An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy & Environmental Science, 2014. 7(10): p. 3307-3312.
連結:
-
6. Zhang, S.S., Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013. 231: p. 153-162.
連結:
-
7. Guo, B., et al., Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chemical Communications, 2013. 49(43): p. 4905-4907.
連結:
-
8. Zhang, B., et al., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010. 3(10): p. 1531-1537.
連結:
-
9. Xin, S., et al., Smaller sulfur molecules promise better lithium–sulfur batteries. Journal of the American Chemical Society, 2012. 134(45): p. 18510-18513.
連結:
-
10. Schuster, J., et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angewandte Chemie, 2012. 124(15): p. 3651-3655.
連結:
-
11. Chen, J.-j., et al., A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Physical Chemistry Chemical Physics, 2012. 14(16): p. 5376-5382.
連結:
-
12. Wang, C., et al., Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chemical Communications, 2014. 50(10): p. 1202-1204.
連結:
-
13. Xiao, L., et al., A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium‐sulfur batteries with long cycle life. Advanced Materials, 2012. 24(9): p. 1176-1181.
連結:
-
14. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
連結:
-
15. Zhou, G., et al., A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries. Advanced materials, 2014. 26(4): p. 625-631.
連結:
-
16. Chen, H., et al., Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano letters, 2014. 15(1): p. 798-802.
連結:
-
17. Chen, H., et al., Rational Design of Cathode Structure for High Rate Performance Lithium–Sulfur Batteries. Nano letters, 2015. 15(8): p. 5443-5448.
連結:
-
18. Song, J., et al., Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium–Sulfur Batteries. Nano letters, 2016. 16(2): p. 864-870.
連結:
-
19. Qiu, Y., et al., High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano letters, 2014. 14(8): p. 4821-4827.
連結:
-
20. Ji, L., et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 2011. 133(46): p. 18522-18525.
連結:
-
21. Zhang, C., et al., Confining Sulfur in Double‐Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie, 2012. 124(38): p. 9730-9733.
連結:
-
22. Seh, Z.W., et al., Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature communications, 2013. 4: p. 1331.
連結:
-
23. Li, W., et al., High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proceedings of the National Academy of Sciences, 2013. 110(18): p. 7148-7153.
連結:
-
24. Evers, S., T. Yim, and L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. The Journal of Physical Chemistry C, 2012. 116(37): p. 19653-19658.
連結:
-
25. Pang, Q., et al., Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature communications, 2014. 5.
連結:
-
26. Tao, X., et al., Strong Sulfur Binding with Conducting Magnéli-Phase Ti n O2 n–1 Nanomaterials for Improving Lithium–Sulfur Batteries. Nano letters, 2014. 14(9): p. 5288-5294.
連結:
-
27. Liang, X., et al., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nature Communications, 2015. 6.
連結:
-
28. Hart, C.J., et al., Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications, 2015. 51(12): p. 2308-2311.
連結:
-
29. Zhang, Z., et al., A functional carbon layer-coated separator for high performance lithium sulfur batteries. Solid State Ionics, 2015. 278: p. 166-171.
連結:
-
30. Chung, S.H. and A. Manthiram, Bifunctional Separator with a Light‐Weight Carbon‐Coating for Dynamically and Statically Stable Lithium‐Sulfur Batteries. Advanced Functional Materials, 2014. 24(33): p. 5299-5306.
連結:
-
31. Bartholomew, R.F. and D. Frankl, Electrical properties of some titanium oxides. Physical review, 1969. 187(3): p. 828.
連結:
-
32. Liborio, L., G. Mallia, and N. Harrison, Electronic structure of the Ti 4 O 7 Magnéli phase. Physical Review B, 2009. 79(24): p. 245133.
連結:
-
33. Smith, J., F. Walsh, and R. Clarke, Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials. Journal of applied electrochemistry, 1998. 28(10): p. 1021-1033.
連結:
-
34. Kohlbrecka, K. and J. Przyluski, Sub-stoichiometric titanium oxides as ceramic electrodes for oxygen evolution-structural aspects of the voltammetric behaviour of Ti n O 2n-1. Electrochim Acta, 1994. 39: p. 1591.
連結:
-
35. Portehault, D., et al., Facile general route toward tunable magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites. ACS nano, 2011. 5(11): p. 9052-9061.
連結:
-
36. Chen, Y. and J. Mao, Sol–gel preparation and characterization of black titanium oxides Ti2O3 and Ti3O5. Journal of Materials Science: Materials in Electronics, 2014. 25(3): p. 1284-1288.
連結:
-
37. Deng, Z., et al., Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. Journal of The Electrochemical Society, 2013. 160(4): p. A553-A558.
連結:
-
1. jane. 2014; http://www.compotechasia.com/a/____/2014/0316/25671.html.
|