题名

探討Ti4O7導電金屬氧化物之添加增進單質硫與碳硫複合材系統下鋰硫電池充放電性能之研究

并列篇名

Investigation of Electrochemical Performance of Lithium-Sulfur Cell by Addition of Ti4O7 Conductive Metal Oxide

作者

余俊緯

关键词

鋰硫電池 ; 亞氧化鈦 ; 金屬氧化物 ; Lithium sulfur ; Ti4O7 ; Conductive metal oxide

期刊名称

清華大學材料科學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

蔡哲正

内容语文

繁體中文

中文摘要

鋰硫電池具有高達1675 mAh/g的理論電容量以及2600 Wh/kg的能量密度,遠高於傳統鋰離子二次電池的3-5倍之多,此外硫還具有地表含量豐富、環境友善和低成本等優點,因此鋰硫電池被視為是下一世代極具開發前景的儲能材料之一。 本研究嘗試以部分添加Ti4O7導電金屬氧化物,藉由Ti4O7優良的導電性與化學吸附性有效提升鋰硫電池在單質硫與碳硫複合材系統下的效能,本實驗的第一部分為Ti4O7參雜進單質硫的系統中,發現在37.5 %和50 % Ti4O7取代量下表現出較佳的循環壽命,且由阻抗分析中發現適量添加Ti4O7能夠大幅降低單質硫系統下的電荷轉移阻抗;本實驗第二部分為將Ti4O7參雜在碳硫複合材的系統中,其中在25 %和50 % Ti4O7取代量下可降低電池內部電荷轉移阻抗並有效提升電容量和循環壽命表現,且以碳硫複合材作為活物可大幅提升活物利用率,使電性表現明顯優於單質硫系統。實驗的第三部分是以刮刀塗布的方式將Ti4O7與導電碳黑Super P披覆在隔離膜表面,此導電層可作為上集流器加速電子傳遞以及限制液態的鋰硫化合物的擴散,使鋰硫電池在電性及循環壽命上有更好的表現。

英文摘要

The lithium-sulfur batteries show significant potential for next-generation energy storage systems, due to its high specific capacity of 1675 mAh/g and theoretical energy density of 2600 Wh/kg are 3-5 times higher than conventional lithium ion battery. Furthermore, sulfur show advantages of low cost, environmental benign, and naturally abundant. The present work attempted to use Ti4O7 conductive metal oxide as an additive in the cathode to increase cycling performance owning to its high electric conductivity and chemical binding of soluble polysulfides. At the first part, the Ti4O7 was introduced to pure sulfur system through slurry mixing process. The results showed that the addition of 37.5 % to 50 % Ti4O7 could improve cycle life and capacity retention. From EIS measurement, we found that the charge transfer resistance was significantly reduced by addition of appropriate amount of Ti4O7. At the second part, the Ti4O7 was introduced to Graphene-S composite system through slurry mixing process. The results showed that the addition of 25 % to 50 % Ti4O7 could reduce charge transfer resistance and improve the capacity performance and cycle life. In addition, using Graphene-S composite as active material could lead to better sulfur utilization than pure sulfur system. At the third part, the Ti4O7 and conductive carbon black Super P were coated on the commercial polypropylene separator by doctor blade method. The functional coating layer has been investigated to improve the electrochemical performance of lithium-sulfur battery, and served as an upper current collector to facilitate electron transport and a conductive network for trapping and depositing dissolved polysulfides.

主题分类 工學院 > 材料科學工程學系
工程學 > 工程學總論
参考文献
  1. 2. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    連結:
  2. 3. Van Noorden, R., The rechargeable revolution: A better battery. Nature, 2014. 507(7490): p. 26-28.
    連結:
  3. 4. Bruce, P.G., et al., Li-O2 and Li-S batteries with high energy storage. Nature materials, 2012. 11(1): p. 19-29.
    連結:
  4. 5. Li, N., et al., An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy & Environmental Science, 2014. 7(10): p. 3307-3312.
    連結:
  5. 6. Zhang, S.S., Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013. 231: p. 153-162.
    連結:
  6. 7. Guo, B., et al., Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chemical Communications, 2013. 49(43): p. 4905-4907.
    連結:
  7. 8. Zhang, B., et al., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010. 3(10): p. 1531-1537.
    連結:
  8. 9. Xin, S., et al., Smaller sulfur molecules promise better lithium–sulfur batteries. Journal of the American Chemical Society, 2012. 134(45): p. 18510-18513.
    連結:
  9. 10. Schuster, J., et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angewandte Chemie, 2012. 124(15): p. 3651-3655.
    連結:
  10. 11. Chen, J.-j., et al., A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Physical Chemistry Chemical Physics, 2012. 14(16): p. 5376-5382.
    連結:
  11. 12. Wang, C., et al., Sulfur–amine chemistry-based synthesis of multi-walled carbon nanotube–sulfur composites for high performance Li–S batteries. Chemical Communications, 2014. 50(10): p. 1202-1204.
    連結:
  12. 13. Xiao, L., et al., A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium‐sulfur batteries with long cycle life. Advanced Materials, 2012. 24(9): p. 1176-1181.
    連結:
  13. 14. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    連結:
  14. 15. Zhou, G., et al., A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries. Advanced materials, 2014. 26(4): p. 625-631.
    連結:
  15. 16. Chen, H., et al., Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano letters, 2014. 15(1): p. 798-802.
    連結:
  16. 17. Chen, H., et al., Rational Design of Cathode Structure for High Rate Performance Lithium–Sulfur Batteries. Nano letters, 2015. 15(8): p. 5443-5448.
    連結:
  17. 18. Song, J., et al., Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium–Sulfur Batteries. Nano letters, 2016. 16(2): p. 864-870.
    連結:
  18. 19. Qiu, Y., et al., High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano letters, 2014. 14(8): p. 4821-4827.
    連結:
  19. 20. Ji, L., et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 2011. 133(46): p. 18522-18525.
    連結:
  20. 21. Zhang, C., et al., Confining Sulfur in Double‐Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie, 2012. 124(38): p. 9730-9733.
    連結:
  21. 22. Seh, Z.W., et al., Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature communications, 2013. 4: p. 1331.
    連結:
  22. 23. Li, W., et al., High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proceedings of the National Academy of Sciences, 2013. 110(18): p. 7148-7153.
    連結:
  23. 24. Evers, S., T. Yim, and L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. The Journal of Physical Chemistry C, 2012. 116(37): p. 19653-19658.
    連結:
  24. 25. Pang, Q., et al., Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature communications, 2014. 5.
    連結:
  25. 26. Tao, X., et al., Strong Sulfur Binding with Conducting Magnéli-Phase Ti n O2 n–1 Nanomaterials for Improving Lithium–Sulfur Batteries. Nano letters, 2014. 14(9): p. 5288-5294.
    連結:
  26. 27. Liang, X., et al., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nature Communications, 2015. 6.
    連結:
  27. 28. Hart, C.J., et al., Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications, 2015. 51(12): p. 2308-2311.
    連結:
  28. 29. Zhang, Z., et al., A functional carbon layer-coated separator for high performance lithium sulfur batteries. Solid State Ionics, 2015. 278: p. 166-171.
    連結:
  29. 30. Chung, S.H. and A. Manthiram, Bifunctional Separator with a Light‐Weight Carbon‐Coating for Dynamically and Statically Stable Lithium‐Sulfur Batteries. Advanced Functional Materials, 2014. 24(33): p. 5299-5306.
    連結:
  30. 31. Bartholomew, R.F. and D. Frankl, Electrical properties of some titanium oxides. Physical review, 1969. 187(3): p. 828.
    連結:
  31. 32. Liborio, L., G. Mallia, and N. Harrison, Electronic structure of the Ti 4 O 7 Magnéli phase. Physical Review B, 2009. 79(24): p. 245133.
    連結:
  32. 33. Smith, J., F. Walsh, and R. Clarke, Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials. Journal of applied electrochemistry, 1998. 28(10): p. 1021-1033.
    連結:
  33. 34. Kohlbrecka, K. and J. Przyluski, Sub-stoichiometric titanium oxides as ceramic electrodes for oxygen evolution-structural aspects of the voltammetric behaviour of Ti n O 2n-1. Electrochim Acta, 1994. 39: p. 1591.
    連結:
  34. 35. Portehault, D., et al., Facile general route toward tunable magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites. ACS nano, 2011. 5(11): p. 9052-9061.
    連結:
  35. 36. Chen, Y. and J. Mao, Sol–gel preparation and characterization of black titanium oxides Ti2O3 and Ti3O5. Journal of Materials Science: Materials in Electronics, 2014. 25(3): p. 1284-1288.
    連結:
  36. 37. Deng, Z., et al., Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. Journal of The Electrochemical Society, 2013. 160(4): p. A553-A558.
    連結:
  37. 1. jane. 2014; http://www.compotechasia.com/a/____/2014/0316/25671.html.