题名

應用於植入式應用具資料傳輸能力之無電容無線能源傳輸系統設計

并列篇名

Development of Capacitorless Inductive Power Transfer Subsystem with Bidirectional Communication Capability for Implanted Applications

作者

林鈺珀

关键词

生醫植入式子系統 ; 低壓差線性穩壓器 ; 負載偏移調變 ; 感應電源鏈接 ; 無輸出電容功率調節器 ; Bio-implantable subsystem ; Low-dropout (LDO) linear regulator ; Load-shift keying (LSK) ; Inductive power link ; Output-capacitorless power regulator

期刊名称

清華大學電機工程學系所學位論文

卷期/出版年月

2016年

学位类别

博士

导师

鄭桂忠

内容语文

英文

中文摘要

論文提出一個應用於植入式應用具資料傳輸能力之無電容無線能源傳輸系統。在生醫植入式裝置中無線電源傳輸是一個熱門的題目,在生物訊號監控與深腦層刺激的應用上,透過雙向訊通訊實現閉迴路控制與智慧的刺激治療是非常重要的。因此具備資料傳輸能力無線能源傳輸系統在植入式裝置中在生醫植入式裝置中是不可或缺的。一般來說線圈感應式無線電源與資料傳輸系統需要使用多個電感或天線,來實現植入端與外部裝置間的閉迴路的控制與通訊。但是對於醫生與病患來說植入多個天線或線圈是非常不容易的且會對病患造成不適感,所以要如何最小化裝置尺寸盡量減少外部元件的使用是一個非常重要。因此我們藉由整合一個單線圈具雙向資料與電源傳輸能力子系統與一個無電容感應電源傳輸子系統來縮小植入裝置尺寸,且同時達到快速的電源穩壓性能與高速雙向資料傳輸能力。 論文主要可分成兩個部分,第一個部分是具快速暫態反應之單線圈無線資料與電源供應傳輸子系統。此系統在單一線圈上同時使用了振幅調變與負載調變機制且透過分時多工的方式實現雙向的資料傳輸。我們提出的植入式晶片使用0.18微米製程可以提供最大功率15 mW。穩壓器在1.2 V操作電壓下且負載電流在100 ns內變化15 mA,其最大的overshoot電壓與undershoot電壓皆低於55 mV,且穩壓器的回復時間低於200 ns。負載調變收發機則實現了在3.3 mA的無線電源供應負載下達到2 Mbps的資料傳輸速度。第二個部分,我們提出了一個具高電源拒斥比穩壓器之無電容無線電源傳輸子系統,由於系統中使用了高電源拒斥比與快速暫態反應之穩壓器,使系統無須使用離散的電容來實現無線電源傳輸達到最小化裝置尺寸的目的,所提出之植入式晶片使用0.18微米製程可以提供最大功率11 mW。穩壓器在1.25 V操作電壓下且負載電流在50 ns內變化11 mA,其最大的overshoot電壓與undershoot電壓皆低於42mV,此外穩壓器分別在操作頻率為10 kHz與1 Mhz下達到了71.2 dB與45.6 dB高的電源拒斥比性能。 在論文中將仔細介紹具資料傳輸能力的無電容無線電源傳輸系統之電路分析與設計,其中包括單線圈無線雙向資料電源傳輸子系統與無電容無線電源傳輸子系統。

英文摘要

An output-capacitorless inductive power transfer subsystem with bidirectional communication capability for implanted applications is presented in this thesis. The most popular topic in the field of implanted applications is inductive power transfer. Moreover, bidirectional communication is also essential to deliver closed-loop, smart implantable treatments, especially for biological signal monitoring and deep-brain stimulation. Therefore inductive power transfer subsystems with bidirectional communication capability are necessary in implanted devices. Usually, inductive power and data communication require multiple antennas to realize the closed-loop transfers between an implanted device and an external device. However, surgeons may have difficulties implanting a device with multiple antennas, therefore the minimization of device size is crucial. The number of antennas must be minimized and all external components that can be removed must be removed. We propose to minimize device size and realize fast transient response power regulation simultaneously, by implementing a single coil power and data transmission subsystem and an output-capacitorless power transfer subsystem. This thesis includes two major parts. In the first part, we present a single coil power and data transmission subsystem with a fast transient regulator for bidirectional neuroprosthetic applications. Both amplitude shift keying (ASK) and load shift keying (LSK) have been used in this design. LSK and time division multiple access (TDMA) techniques can enable single coil power and data transmission at the same time. The proposed implantable chip, fabricated using commercial 0.18 μm complementary metal oxide semiconductor (CMOS) technology, yielded a maximal output power of 15 mW. Operated with a 1.2 V power supply, the maximal overshoot and undershoot voltages were both less than 55 mV for a 15 mA full-load current that changed within an current change rising/falling edge time of 100 ns, and the recovery time of LDO regulator was less than 200 ns. The maximal transmission data rate of the proposed LSK transceiver was 2 Mbps at a load current of 3.3 mA. In the second part, we present an output-capacitorless power transfer subsystem with a high power supply rejection ratio (PSRR) regulator. The system does not require an external capacitor because it has an output-capacitorless power transfer subsystem with a high PSRR and a fast transient response regulator. The proposed implantable chip, fabricated using commercial 0.18μm CMOS technology, yielded an output power of 11 mW. The LDO regulator operated at 1.25 V, the maximum overshoot and undershoot voltages were both less than 42 mV for an 11 mA full-load current whose rising and falling time were less than 50 ns, and achieved high PSRR performance of 71.2 dB and 45.6 dB at 10 kHz and 1 MHz, respectively. We will detail circuits design and analysis of an output-capacitorless inductive power transfer subsystem with bidirectional communication capability that incorporates both the single coil power and data transmission subsystem and the output-capacitorless power transfer subsystem in this thesis.

主题分类 電機資訊學院 > 電機工程學系所
工程學 > 電機工程
参考文献
  1. [1] M. Mollazadeh, K. Murari, G. Cauwenberghs, and N. Thakor, “Wireless Micropower Instrumentation for Multimodal Acquisition of Electrical and Chemical Neural Activity,” IEEE Tran. Biomed. Circuits and Syst., vol. 3, no. 6, pp. 388–397, Dec. 2009.
    連結:
  2. [2] Y.-K. Lo, K. Chen, P. Gad, and W. Liu, “A Fully-Integrated High- Compliance Voltage SoC for Epi-Retinal and Neural Prostheses,” IEEE Tran. Biomed. Circuits and Syst., vol. 7, no. 6, pp. 761–772, Dec. 2013.
    連結:
  3. [3] T. Tokuda, Y. Takeuchi, Y. Sagawa, T. Noda, K. Sasagawa, K. Nishida, T. Fujikado, and J. Ohta, “Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability,” IEEE Tran. Biomed. Circuits and Syst., vol. 4, no. 6, pp. 445–453, Dec. 2010.
    連結:
  4. [4] M. Ghovanloo and K. Najafi, “A compact large Voltage-compliance high output-impedance programmable current source for implantable microstimulators,” IEEE Tran. Biomed. Eng., vol. 52, no. 1, pp. 97–105, Jan. 2005.
    連結:
  5. [5] S.-Y. Lee, M. Su, M.-C. Liang, Y.-Y. Chen, C.-H. Hsieh, C.-M. Yang, H.-Y. Lai, J.-W. Lin, and Q. Fang, “A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker,” IEEE Tran. Biomed. Circuits and Syst., vol. 5, no. 6, pp. 511–522, Dec. 2011.
    連結:
  6. [6] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, M.-S. Cheng, Y.-L. Hsin, S.-F. Liang, Y.-L. Wang, F.-Z. Shaw, Y.-H. Huang, C.-H. Yang, and C.-Y. Wu, “A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 232–247, Jan. 2014.
    連結:
  7. [7] D. Shire, S. Kelly, J. Chen, P. Doyle, M. Gingerich, S. Cogan, W. Drohan, O. Mendoza, L. Theogarajan, J. Wyatt, and J. Rizzo, “Development and Implantation of a Minimally Invasive Wireless Subretinal Neurostimulator,” IEEE Tran. Biomed. Eng., vol. 56, no. 10, pp. 2502–2511, Oct. 2009.
    連結:
  8. [8] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, J. Granacki, J. LaCoss, and J. Wills, “Implantable biomimetic microelectronic systems design,” IEEE Eng. in Medicine and Biology Mag., vol. 24, no. 5, pp. 66–74, Sep. 2005.
    連結:
  9. [9] J. Yoo, L. Yan, S. Lee, Y. Kim, and H.-J. Yoo, “A 5.2 mW Self-Configured Wearable Body Sensor Network Controller and a 12 µW Wirelessly Powered Sensor for a Continuous Health Monitoring System,” IEEE J. Solid-State
    連結:
  10. [10] A. Sodagar, K. Wise, and K. Najafi, “A Wireless Implantable Microsystem for Multichannel Neural Recording,” IEEE Tran. Microwave Theory and Techniques, vol. 57, no. 10, pp. 2565–2573, Oct. 2009.
    連結:
  11. [11] R. Harrison, P. Watkins, R. Kier, R. Lovejoy, D. Black, B. Greger, and F. Solzbacher, “A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123–133, Jan. 2007.
    連結:
  12. [12] A. Rush and P. Troyk, “A Power and Data Link for a Wireless-Implanted Neural Recording System,” IEEE Tran. Biomed. Eng., vol. 59, no. 11, pp. 3255–3262, Nov. 2012.
    連結:
  13. [13] P. Cong, W. Ko, and D. Young, “Wireless Batteryless Implantable Blood Pressure Monitoring Microsystem for Small Laboratory Animals,” IEEE J. Sensors, vol. 10, no. 2, pp. 243–254, Feb. 2010.
    連結:
  14. [14] M. Kiani and M. Ghovanloo, “An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 57, no. 4, pp. 260–264, Apr. 2010.
    連結:
  15. [15] L. Zou and T. Larsen, “Dynamic power control circuit for implantable biomedical devices,” IET Circuits and Devices Systems, vol. 5, no. 4, pp. 297–302, Jul. 2011.
    連結:
  16. [16] D. Cirmirakis, A. Demosthenous, N. Saeidi, and N. Donaldson, “Humidityto- Frequency Sensor in CMOS Technology With Wireless Readout,” IEEE J. Sensors, vol. 13, no. 3, pp. 900–908, Mar. 2013.
    連結:
  17. [17] G. Wang, W. Liu, M. Sivaprakasam, and G. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 52, no. 10, pp. 2109–2117, Oct.
    連結:
  18. [18] H.-W. Huang, K.-H. Chen, and S.-Y. Kuo, “Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2451–2465, Nov. 2007.
    連結:
  19. [19] M. Mulligan, B. Broach, and T. Lee, “A 3MHz Low-Voltage Buck Converter with Improved Light Load Efficiency,” in Int. Solid-State Circuits Conf., Feb. 2007, pp. 528–620.
    連結:
  20. [20] H. Jia, J. Lu, X. Wang, K. Padmanabhan, and Z. Shen, “Integration of a Monolithic Buck Converter Power IC and Bond-wire Inductors With Ferrite Epoxy Glob Cores,” IEEE Tran. Power Electronics, vol. 26, no. 6, pp. 1627–1630, Jun. 2011.
    連結:
  21. [21] W. Yan, W. Li, and R. Liu, “A Noise-Shaped Buck DC-DC Converter With Improved Light-Load Efficiency and Fast Transient Response,” IEEE Tran. Power Electronics, vol. 26, no. 12, pp. 3908–3924, Dec. 2011.
    連結:
  22. [22] S. Kudva and R. Harjani, “Fully-Integrated On-Chip DC-DC Converter With a 450X Output Range,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1940–1951, Aug. 2011.
    連結:
  23. [23] H. Nam, Y. Ahn, and J. Roh, “5-V Buck Converter Using 3.3-V Standard CMOS Process With Adaptive Power Transistor Driver Increasing Efficiency and Maximum Load Capacity,” IEEE Tran. Power Electronics, vol. 27, no. 1, pp. 463–471, Jan. 2012.
    連結:
  24. [24] C.-H. Wu and L.-R. Chang-Chien, “Design of the output-capacitorless low-dropout regulator for nano-second transient response,” IET Power Electronics, vol. 5, no. 8, pp. 1551–1559, Sep. 2012.
    連結:
  25. [25] M. Ho and K.-N. Leung, “Dynamic Bias-Current Boosting Technique for Ultralow-Power Low-Dropout Regulator in Biomedical Applications,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 58, no. 3, pp. 174–178, Mar. 2011.
    連結:
  26. [26] S. Heng and C.-K. Pham, “A Low-Power High-PSRR Low-Dropout Regulator With Bulk-Gate Controlled Circuit,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 57, no. 4, pp. 245–249, Apr. 2010.
    連結:
  27. [27] H. Lee, P. Mok, and K.-N. Leung, “Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 52, no. 9, pp. 563–567, Sep. 2005.
    連結:
  28. [28] Z. Kamal, Q. Hassan, and Z. Mouhcine, “Full on-chip CMOS low dropout voltage regulator using MOS capacitor compensation,” in Int. Conf. Multimedia Computing and Systems, May 2012, pp. 1109–1114.
    連結:
  29. [29] C.-J. Shih, K.-Y. Chu, Y.-H. Lee, W.-C. Chen, H.-Y. Luo, and K.-H. Chen,“A Power Cloud System (PCS) for High Efficiency and Enhanced Transient Response in SoC,” IEEE Tran. Power Electronics, vol. 28, no. 3, pp. 1320–1330, Mar. 2013.
    連結:
  30. [30] S. Guo and H. Lee, “An Efficiency-Enhanced CMOS Rectifier With Unbalanced-Biased Comparators for Transcutaneous-Powered High-Current Implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796–1804, Jun. 2009.
    連結:
  31. [31] G. Bawa and M. Ghovanloo, “Active High Power Conversion Efficiency Rectifier With Built-In Dual-Mode Back Telemetry in Standard CMOS Technology,” IEEE Tran. Biomed. Circuits and Sys., vol. 2, no. 3, pp. 184–192, Sep. 2008.
    連結:
  32. [32] Y. Lam, W. Ki, and C. Tsui, “Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 53, no. 12, pp. 1378–1382, Dec. 2006.
    連結:
  33. [33] G. Bawa, A. Huang, and M. Ghovanloo, “An efficient 13.56 MHz active back-telemetry rectifier in standard CMOS technology,” in IEEE Int. Symp. Circuits and Syst., May 2010, pp. 1201–1204.
    連結:
  34. [35] H. Lee and M. Ghovanloo, “An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 58, no. 8, pp. 1749–1760, Aug. 2011.
    連結:
  35. [36] C. Zhan and W.-H. Ki, “Analysis and Design of Output-Capacitor-Free Low-Dropout Regulators With Low Quiescent Current and High Power Supply Rejection,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 61, no. 2, pp. 625–636, Feb. 2014.
    連結:
  36. [38] V. Gupta and G. A. Rincon-Mora, “A 5mA 0.6 _m CMOS Miller-Compensated LDO Regulator with -27dB Worst-Case Power-Supply Rejection Using 60pF of On-Chip Capacitance,” in Int. Solid-State Circuits Conf., Feb. 2007, pp. 520–521.
    連結:
  37. [39] C. Zhan and W.-H. Ki, “An output-capacitor-free cascode low-dropout regulator with low quiescent current and high power supply rejection,” in IEEE Asia Pacific Conf. Circuits and Syst., Dec. 2010, pp. 472–475.
    連結:
  38. [40] W. Xu, G. Wang, J. Jiang, X. Qi, and F. Zhang, “A high-PSR transient enhanced output-capacitor less CMOS low-dropout regulator for SoC applications,” Int. J. Electron, vol. 98, no. 10, pp. 1319–1332, Oct. 2011.
    連結:
  39. [41] E. Ho and P. Mok, “Wide-Loading-Range Fully Integrated LDR With a Power-Supply Ripple Injection Filter,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 59, no. 6, pp. 356–360, Jun. 2012.
    連結:
  40. [42] J.-J. Chen, F.-C. Yang, C.-M. Kung, B.-P. Lai, and Y.-S. Hwang, “A capacitor-free fast-transient-response LDO with dual-loop controlled paths,” in IEEE Asian Solid-State Circuits Conf., Nov 2007, pp. 364–367.
    連結:
  41. [43] S. K. Lau, P. Mok, and K. N. Leung, “A Low-Dropout Regulator for SoC With Q-Reduction,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 658–664, Mar. 2007.
    連結:
  42. [44] R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, “Full On-Chip CMOS Low-Dropout Voltage Regulator,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 54, no. 9, pp. 1879–1890, Sept 2007.
    連結:
  43. [49] H. Scherberger, “Neural control of motor prostheses,” Curr. Opin. Neurobiol., vol. 19, pp. 629–633, Nov. 2009.
    連結:
  44. [50] M. Nicolelis and M. Lebedev, “Principles of neural ensemble physiology underlying the operation of brain-machine interfaces,” Nat. Rev. Neurosci., vol. 10, p. 530-540, Jul. 2009.
    連結:
  45. [51] R. Andersen, E. Hwang, and G. Mulliken, “Cognitive neural Prosthetics,” Annu. Rev. Psychol., vol. 61, p. 169-190, Jul. 2010.
    連結:
  46. [52] A. Green and J. Kalaska, “Learning to move machines with the mind,” Trends Neurosci., vol. 34, no. 2, p. 61-75, Feb. 2011.
    連結:
  47. [53] B. Aouizerate, E. Cuny, C. Martin-Guehl, D. Guehl, H. Amieva, A. Benazzouz, C. Fabrigoule, M. Allard, A. Rougier, B. Bioulac, J. Tignol, and P. Burbaud, “Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report,” J. Neurosurg., vol. 101, no. 4, p. 682-686, Oct. 2004.
    連結:
  48. [54] A. Bragin, J. Hetke, C. Wilson, D. Anderson, J. Engel Jr, and G. Buzsáki, “Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification,” J. Neurosci. Methods, vol. 98, no. 1, pp. 77–82, 2000.
    連結:
  49. [55] C. Oluigbo, A. Salma, and A. Rezai, “Deep brain stimulation for neurological disorders,” IEEE Rev. Biomed. Eng., vol. 5, pp. 88–99, 2012.
    連結:
  50. [56] T. W. Berger, R. E. Hampson, D. Song, A. Goonawardena, V. Z. Marmarelis, and S. A. Deadwyler, “A cortical neural prosthesis for restoring and enhancing memory,” J. Neural Eng., vol. 8, no. 4, p. 1-11, 2011.
    連結:
  51. [58] L. Hochberg and J. Donoghue, “Sensors for brain-computer interfaces,” IEEE Eng. in Medicine and Biology Mag., vol. 25, no. 5, pp. 32–38, Sep. 2006.
    連結:
  52. [59] C.-P. Young, S.-F. Liang, D.-W. Chang, Y.-C. Liao, F.-Z. Shaw, and C.-H. Hsieh, “A Portable Wireless Online Closed-Loop Seizure Controller in Freely Moving Rats,” IEEE Tran. Instrumentation and Measurement, vol. 60, no. 2, pp. 513–521, Feb. 2011.
    連結:
  53. [60] M. T. Salam, M. Sawan, and D. K. Nguyen, “Implantable Closed-Loop Epilepsy Prosthesis: Modeling, Implementation and Validation,” J. Emerg. Technol. Comput. Syst., vol. 8, no. 2, pp. 9:1–9:18, Jun. 2012.
    連結:
  54. [61] S. Boyer, M. Sawan, M. Abdel-Gawad, S. Robin, and M. Elhilali, “Implantable selective stimulator to improve bladder voiding: Design and chronic experiments in dogs,” IEEE Trans. Rehab. Eng., vol. 8, no. 4, pp. 464–470, Dec. 2000.
    連結:
  55. [62] M. Sawan, “Microsystems dedicated to wireless multichannel monitoring and microstimulation: design, test and packaging,” in Int. Conf. Solid-State and Integrated Circuits Technology, vol. 2, Oct. 2004, pp. 1408–1411.
    連結:
  56. [63] S. Majerus, P. Fletter, M. Damaser, and S. Garverick, “Low-Power Wireless Micromanometer System for Acute and Chronic Bladder-Pressure Monitoring,” IEEE Tran. Biomed. Eng., vol. 58, no. 3, pp. 763–767, Mar. 2011.
    連結:
  57. [64] J. Steve, L. Steven, A. Michael, P. Fletter, and M. Damaser, “Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Moni-toring,” J. Emerging Technologies in Computing, vol. 8, no. 2, p. 11, Jun. 2012.
    連結:
  58. [65] Y.-T. Li, J.-J. Chen, L.-T. Chen, W.-S. Lin, and C.-H. Chu, “Wireless implantable biomicrosystem for bladder pressure monitoring and nerve stimulation,” in IEEE Biomed. Circuits and Syst. Conf., Nov. 2012, pp. 296–299.
    連結:
  59. [67] M. Sugimachi and K. Sunagawa, “Bionic Cardiology: Exploration Into a Wealth of Controllable Body Parts in the Cardiovascular System,” IEEE Rev. Biomed. Eng., vol. 2, pp. 172–186, 2009.
    連結:
  60. [68] T. Berger, G. Gerhardt, M. Liker, and W. Soussou, “The Impact of Neurotechnology on Rehabilitation,” IEEE Rev. Biomed. Eng., vol. 1, pp. 157– 197, 2008.
    連結:
  61. [69] E. Schmidt, M. Bak, F. Hambrecht, C. Kufta, D. O’Rourke, and P. Vallabhanath, “Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex,” Brain, vol. 119, no. 2, pp. 507–522, 1996.
    連結:
  62. of a cochlear implant for multichannel high-rate pulsatile stimulation strategies,” IEEE Trans. Rehab. Eng., vol. 3, no. 1, pp. 112–116, Mar. 1995.
    連結:
  63. [72] S. Santaniello, G. Fiengo, L. Glielmo, and W. M. Grill, “Closed-Loop Control of Deep Brain Stimulation: A Simulation Study,” IEEE Tran. Neural Syst. and Rehab. Eng., vol. 19, no. 1, pp. 15–24, Feb. 2011.
    連結:
  64. [73] J. Volkmann, “Deep brain stimulation for the treatment of Parkinson’s disease,” J. Clinical neurophysiology, vol. 21, no. 1, pp. 6–17, 2004.
    連結:
  65. [77] W. Xu, Z. Luo, and S. Sonkusale, “Fully Digital BPSK Demodulator and Multilevel LSK Back Telemetry for Biomedical Implant Transceivers,” IEEE Tran. Circuits and Syst. II: Exp. Briefs, vol. 56, no. 9, pp. 714–718, Sep. 2009.
    連結:
  66. [78] S. Mandal and R. Sarpeshkar, “Power-Efficient Impedance-Modulation Wireless Data Links for Biomedical Implants,” IEEE Tran. Biomed. Circuits and Syst., vol. 2, no. 4, pp. 301–315, Dec. 2008.
    連結:
  67. [79] G. Rincon-Mora and P. Allen, “A low-voltage, low quiescent current, low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998.
    連結:
  68. [80] K. N. Leung and P. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1691–1702, Oct. 2003.
    連結:
  69. [81] C. Chava and J. Silva-Martinez, “A frequency compensation scheme for LDO voltage regulators,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 51, no. 6, pp. 1041–1050, Jun. 2004.
    連結:
  70. [82] W.-J. Huang, S.-H. Lu, and S.-I. Liu, “CMOS low dropout linear regulator with single Miller capacitor,” Electronics Letters, vol. 42, no. 4, pp. 216–217, Feb. 2006.
    連結:
  71. [83] S. Stanslaski, P. Afshar, P. Cong, J. Giftakis, P. Stypulkowski, D. Carlson, D. Linde, D. Ullestad, A.-T. Avestruz, and T. Denison, “Design and Validation of a Fully Implantable, Chronic, Closed-Loop Neuromodulation Device With Concurrent Sensing and Stimulation,” IEEE Tran. Neural Syst. And Rehab. Eng., vol. 20, no. 4, pp. 410–421, Jul. 2012.
    連結:
  72. [84] K. V. Schuylenbergh and R. Puers, Inductive Powering. New York: Springer-Verlag, 2009.
    連結:
  73. [85] K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “A 300 nW, 15 ppm/◦C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2047–2054, Jul. 2009.
    連結:
  74. [86] S. Kim, P. Tathireddy, R. Normann, and F. Solzbacher, “Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain,” IEEE Tran. Neural Syst. and Rehab. Eng., vol. 15, no. 4, pp. 493–501, Dec. 2007.
    連結:
  75. [87] J. Guo and K. N. Leung, “A 6-_W Chip-Area-Efficient Output-Capacitorless LDO in 90-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1896–1905, Sep. 2010.
    連結:
  76. [88] P. Y. Or and K. N. Leung, “An Output-Capacitorless Low-Dropout Regulator With Direct Voltage-Spike Detection,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 458–466, Feb. 2010.
    連結:
  77. [89] M. H. Rashid, Microelectronic Circuits: Analysis and Design. Cengage Learning, 2016.
    連結:
  78. [90] Y.-P. Lin and K.-T. Tang, “An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants,” IEEE Tran. Biomed. Circuits and Syst., vol. 10, no. 2, pp. 435–444, Apr. 2016.
    連結:
  79. [91] S. Chong and P. K. Chan, “A 0.9-_A Quiescent Current Output-Capacitorless LDO Regulator With Adaptive Power Transistors in 65-nm CMOS,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 60, no. 4, pp. 1072–1081, Apr. 2013.
    連結:
  80. [92] W. Ko, S. Liang, and C. Fung, “Design of radio-frequency powered coils for implant instruments,” Medical and Biological Eng. and Computing, vol. 15, no. 6, pp. 634–640, Nov. 1977.
    連結:
  81. [93] N. N. Donaldson and T. A. Perkins, “Analysis of resonant coupled coils in the design of radio frequency transcutaneous links,” Medical and Biological Eng. and Computing, vol. 21, no. 5, pp. 612–627, Sep. 1983.
    連結:
  82. [94] C. Zierhofer and E. S. Hochmair, “High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link,” IEEE Tran. Biomed. Eng., vol. 37, no. 7, pp. 716–722, Jul. 1990.
    連結:
  83. [96] W. J. Heetderks, “RF powering of millimeter- and submillimeter-sized neural prosthetic implants,” IEEE Tran. Biomed. Eng., vol. 35, no. 5, pp. 323–327, May 1988.
    連結:
  84. [98] G. Kendir, W. Liu, G. Wang, M. Sivaprakasam, R. Bashirullah, M. Humayun, and J. Weiland, “An optimal design methodology for inductive power link with class-E amplifier,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 52, no. 5, pp. 857–866, May 2005.
    連結:
  85. [100] R. Harrison, “Designing Efficient Inductive Power Links for Implantable Devices,” in IEEE Int. Symp. Circuits and Syst., May 2007, pp. 2080–2083.
    連結:
  86. [101] M. Baker and R. Sarpeshkar, “Feedback analysis and design of rf power links for low-power bionic systems,” IEEE Tran. Biomed. Circuits and Syst., vol. 1, no. 1, pp. 28–38, Mar. 2007.
    連結:
  87. [103] H. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Tran.Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109, Jun. 1974.
    連結:
  88. [104] R. Garg and I. Bahl, “Characteristics of Coupled Microstriplines,” IEEE Tran. Microwave Theory and Techniques, vol. 27, no. 7, pp. 700–705, Jul. 1979.
    連結:
  89. [105] S. Mohan, M. del Mar Hershenson, S. Boyd, and T. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419–1424, Oct. 1999.
    連結:
  90. [106] U.-M. Jow and M. Ghovanloo, “Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission,” IEEE Tran. Biomed. Circuits and Syst., vol. 1, no. 3, pp. 193–202, Sep. 2007.
    連結:
  91. [108] M. Ghovanloo and S. Atluri, “A Wide-Band Power-Efficient Inductive Wireless Link for Implantable Microelectronic Devices Using Multiple Carriers,” IEEE Tran. Circuits and Syst. I: Reg. Papers, vol. 54, no. 10, pp. 2211–2221, Oct. 2007.
    連結:
  92. [109] R. Negra and W. Bachtold, “Lumped-element load-network design for class-E power amplifiers,” IEEE Tran. Microwave Theory and Techniques, vol. 54, no. 6, pp. 2684–2690, Jun. 2006.
    連結:
  93. Circuits, vol. 45, no. 1, pp. 178–188, Jan. 2010.
  94. 2005.
  95. [34] S. Kim, T. Song, J. Choi, F. Bien, K. Lim, and J. Laskar, “Semi-active high-efficient CMOS rectifier for wireless power transmission,” in IEEE Symp. Radio Frequency Integrated Circuits, May 2010, pp. 97–100.
  96. [37] H.-C. Yang, M.-H. Huang, and K.-H. Chen, “High-PSR-bandwidth capacitor-free LDO regulator with 50_A minimized load current requirement for achieving high efficiency at light loads,” WSEAS Trans. Circuits Syst., vol. 7, no. 5, pp. 428–437, May 2008.
  97. [45] J. Parramon Piella, “Energy Management, wireless and system solutions for highly integrated implantable devices,” Ph.D. dissertation, Universitat Autònoma de Barcelona, Departament d’Enginyeria Electrònica, 2001.
  98. [46] H.-J. Yoo and C. Van Hoof, Bio-Medical CMOS ICs. New York: Springer-Verlag, 2011. [47] F. E. Terman, in Radio Engineer’s Hundbook. New York: McGraw-Hill, 1943, pp. 1–15. [48] N. G. Hatsopoulos and J. P. Donoghue, “The science of neural interface systems,” Annu. Rev. Neurosci., vol. 32, pp. 249–266, Mar. 2009.
  99. [57] T. Berger, A. Ahuja, S. Courellis, S. Deadwyler, G. Erinjippurath, G. Gerhardt, G. Gholmieh, J. Granacki, R. Hampson, M.-C. Hsaio, J. Lacoss, V. Marmarelis, P. Nasiatka, V. Srinivasan, D. Song, A. Tanguay, and J. Wills, “Restoring lost cognitive function,” IEEE Eng. in Medicine and Biology Mag., vol. 24, no. 5, pp. 30–44, Sep. 2005.
  100. [66] F. Mounaim, E. Elzayat, M. Sawan, J. Corcos, and M. Elhilali, “New Neurostimulation And Blockade Strategy To Reduce Sphincter Resistance In Spinalized Dogs,” J. Contemporary Engineering Sciences, vol. 3, no. 7, pp. 321–337, 2010.
  101. [70] J. Coulombe, Y. Hu, J. Gervaisand, and M. Sawan, “An Implant for a Visual Cortical Stimulator,” in Proc. Canadian Engineering Education Assoc, Sep. 2004.
  102. [71] C. Zierhofer, I. Hochmair-Desoyer, and E. S. Hochmair, “Electronic design
  103. [74] Y.-P. Lin, C.-Y. Yeh, P.-Y. Huang, Z.-Y. Wang, H.-H. Cheng, Y.-T. Li, C.-F. Chuang, P.-C. Huang, K.-T. Tang, H.-P. Ma, Y.-C. Chang, S.-R. Yeh, and H. Chen, “A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimulation in Rat Models,” IEEE Tran. Biomed. Circuits and Syst., vol. 10, no. 1, pp. 98–112, Feb. 2016.
  104. [75] Y.-P. Lin, H.-C. Chiu, P.-Y. Huang, Z.-Y. Wang, H.-H. Cheng, P.-C. Huang, K.-T. Tang, H.-P. Ma, and H. Chen, “An implantable microsystem for long-term study on the mechanism of deep brain stimulation,” in IEEE Biomed. Circuits and Syst. Conf., Oct. 2013, pp. 274–277.
  105. [76] C.-H. Hsu, S.-B. Tseng, Y.-J. Hsieh, and C.-C. Wang, “One-Time- Implantable Spinal Cord Stimulation System Prototype,” IEEE Tran. Biomed. Circuits and Syst., vol. 5, no. 5, pp. 490–498, Oct. 2011.
  106. [95] C. Zierhofer and E. Hochmair, “Geometric approach for coupling enhancement
  107. of magnetically coupled coils,” IEEE Tran. Biomed. Eng., vol. 43, no. 7, pp. 708–714, Jul. 1996.
  108. [97] C. Neagu, H. Jansen, A. Smith, J. Gardeniers, and M. Elwanspoek, “Characterization of a planar microcoil for implantable microsystems,” Sensors and Actuators A: Physical, vol. 62, no. 1-3, pp. 599–611, 1997.
  109. [99] S. Chen and V. Thomas, “Optimization of inductive RFID technology,” in IEEE Int. Symp. Electronics and the Environment, 2001, pp. 82–87.
  110. [102] F. Grover, Inductance Calculations. Van Nostrand, New York, 1946.
  111. [107] K. Finkenzeller, RFID Handbook. Wiley-interscience , New York, 2003.