题名

初任教師建立數學臆測規範之行動研究:以高年級為例

并列篇名

An Action Research of A Beginning Teacher Establishing Mathematical Conjecturing Norms - High Grade as a case

作者

余姿縈

关键词

臆測教學 ; 規範 ; 社會規範 ; mathematics conjecturing ; norms ; social norms

期刊名称

清華大學數理教育研究所碩士在職專班學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

林碧珍

内容语文

繁體中文

中文摘要

本研究的目的是探討初任教師建立數學臆測教學規範的歷程中,可能發生的問題以及因應方式,進而在不同的數學臆測教學階段發展出相關的社會規範以及數學臆測規範。 本研究方法為行動研究法,以研究者任教的五年級新班級為研究場域,分別在七個單元中執行數學臆測教學。研究期間透過教材分析資料,以及教學現場錄影錄音、學生工作單、和諍友的對話等資料蒐集與分析,進行教學反省與改進。 本研究在各階段建立的數學臆測教學規範包括社會規範和數學臆測規範。社會規範有階段一的「勇於嘗試,有自信的作答」、「說清楚、講明白」、「傾聽別人說話」、「各單手拿報告單」;階段二的「小組工作單放在小組桌的上方」、「檢驗放置」、「用紅筆批閱」、「用紅筆修改」、「去明星化」、「用不到的資料放班櫃上」,數學臆測規範有階段一的「排序資料」;階段二的「依數據提猜想」、「個人猜想要報告討論」、「依數據說話、對照」、「合併個人猜想,形成小組猜想」、「猜想單上要以文字說明,不以舉例說明」、「分類好的每一類個人猜想都要提出一個小組猜想」;階段三的「合併小組猜想,形成全班猜想」、「前提不當猜想提出」;階段四的「全班猜想前,加上前提」;階段五的「以合理的數學知識來解釋數學猜想」。在不同的數學臆測教學階段建立不同的社會規範以及數學臆測規範。 研究結果發現:數學臆測教學規範支撐著整個數學臆測教學,在不同的數學臆測教學階段,會產生不同的規範,有些規範是屬於社會規範,有些規範是屬於數學臆測規範。而隨著不同的數學臆測教學階段發展會發現數學臆測規範的比重會比社會規範來的越來越重。 最後,本研究對初次實施數學臆測教學之教學者和對建立數學臆測教學規範之教學者給予建議並提出未來研究方向。

英文摘要

The purpose of this study is to discuss the problems and the solutions that may occur when establishing the norms of mathematics conjecturing teaching as a first-year teacher, thereby, developing related social norms and mathematics conjecturing norms in different mathematics conjecturing teaching stages. This study uses action research, with the fifth-grade class taught by the researcher as the research field, doing mathematics conjecturing teaching in seven units respectively. With analyzing data and teaching materials, recording the videos and conversations, student worksheets and dialogues with friends, the researcher reflects on self-teaching and improves. The norms of mathematics conjecturing teaching which built in different stages in this research include social norms and mathematics conjecturing norms. Social norms consist of stage one “Willing to try. Answer confidently.”, “Speak clearly.”, “Listen to others.” and “Two students hold the worksheet with one hand each.”; stage two “Put group worksheet in the middle of the table.”, “Examine worksheet position.”, “Mark with red pens.”, “Revise with red pens.” , “Data speaks louder than star students.” and “Put the materials which are not in use on the cabinet.” Mathematics conjecturing norms consists of stage one “Sort the data.”; stage two “Conjecture boldly. Come up with ideas according to the data”, “Personal opinion should be presented and discussed”, “Speak according to the data and compare the conjectures with the data.”, “Combine personal opinions into a group opinion.”, “Conjecturing worksheets should be written down in words instead of giving examples.” and “Each classified personal conjecture of different category should bring up a group conjecture.”; stage three “Combine group opinions into a class opinion.” and “Premise shouldn’t be regarded as conjecture.”, stage four “Add premise before class conjecture.” and stage five “Explain math conjecture with reasonable math knowledge.” Establish different social norms and mathematics conjecturing norms in different mathematics conjecturing teaching stages. The research results find out that mathematics conjecturing teaching norms support the whole mathematics conjecturing teaching. There will be different norms in different mathematics conjecturing teaching stages. Some of them are social norms, and some of them are mathematics conjecturing norms. It comes out that the proportion of mathematics conjecturing norms increases more than social norms when developing different stages of mathematics conjecturing teaching. Finally, this research provides suggestions to the first-time mathematics conjecturing teaching instructors and establishing mathematics conjecturing norms instructors and gives directions to future research.

主题分类 竹師教育學院 > 數理教育研究所碩士在職專班
社會科學 > 教育學
参考文献
  1. 林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
    連結:
  2. 王淑敏(2013)。一位國小六年級教師發展數學推理規範歷程之行動研究。國立新竹教育大學數理教育研究所碩士論文,未出版,新竹。
  3. 林杏珠(2012)。探究國小五年級課室數學推理歷程的發展。國立新竹教育大學數理教育研究所碩士論文,未出版,新竹。
  4. 林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC99-2511-S134-005-MY3),未出版。
  5. 林碧珍(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科技部補助專題研究計畫。(計畫編號:NSC 100-2511-S-134-006-MY3),未出版。
  6. 林碧珍(2016)。數學臆測任務設計與實踐。台北:師大書苑。
  7. 林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐──以發展學童的數學論證為例。教科書研究,9(1),109-134。
  8. 林碧珍、鍾雅芳(2013)。六年級學生解決數字規律性問題的數學臆測思維歷程。2013 年第五屆科技與數學教育國際學術研討會暨數學教學工作坊論文集(100-110頁)。
  9. 林福來(2006)。整合計畫:青少年數學論證「學習與教學」理論之研究-總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001-MY4),未出版。
  10. 林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001),未出版。
  11. 洪神佑(2016)。在數學臆測教學下一組國小六年級學生論證結構發展之研究。國立新竹教育大學數理教育研究所碩士論文,未出版,新竹。
  12. 夏林清、中華民國基層教師協會譯(1997)。Altrichter, Posch & Somekh 原著。行動研究方法導論-教師動手做研究。台北。遠流。
  13. 徐利治、王前(1989)。數學與思維。湖南:湖南教育出版社。
  14. 張桂惠(2016)。一位國小五年級教師將數學臆測融入教學實踐之行動研究。國立新竹教育大學數理教育研究所碩士論文,未出版,新竹。
  15. 張德銳(2003)。中小學初任教師的教學困境與專業發展策略。教育研究集刊,28,129-144。
  16. 教育部(2008)。國民中小學九年一貫課程綱要數學學習領域。台北:教育部。
  17. 教育部(2014)。國民中小學十二年國民基本教育課程綱要總綱。臺北:作者。
  18. 許馨月(2001)。國小教師實行討論式教學之研究。國立台北師範學院數理教育研究所碩士論文,未出版,台北。
  19. 陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
  20. 陳英娥、林福來(2004)。行動研究促進初任數學教師的教學成長。科學教育學刊 第十二卷 第一期,83-105。
  21. 陳家鵬(2007) 。數學課室討論文化下國小五年級數學推理規範之發展:以分數為例之研究。國立新竹教育大學數理教育研究所碩士論文,未出版,新竹。
  22. 陳惠邦(1998)。教育行動研究。台北:師大書苑。
  23. 黃政傑(1999)。課程改革。台北:漢文。
  24. 蔡文煥(2004)。協同教師發展有利數學意義產生之課室討論文化之研究。論文發表於海峽兩岸教育行動研究研討會議。北京:北京師範大學教育學院。
  25. 蔡清田(2000)。教育行動研究。台北市:五南。
  26. 蔡清田(2007)。學校本位課程發展的新猷與教務課程領導。台北:五南。
  27. 蔡清田(2011)。行動研究的理論與實踐。國家文官學院 T&D飛訊第118期。
  28. 鍾靜(2002)。數學教室文化的新貌。載於詹志禹(主編)。
  29. 鍾靜(2005)。討論式數學教學的理論與實務。發表於國家教育院籌備處主辦之「運用科技增進數學教師專業發展學術研討會」。
  30. 藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究。國立新竹教育大學數理教育研究所碩士論文,未出版,新竹。
  31. Andrew,P.J.(2006)。行動研究導論(A short guide to action Reasearch,2nd ed.;朱仲謀譯)。台北市:五南。
  32. Ball,D.L.,&Bass,H.(2003).Making mathematics reasonable in scool.In J.Kilpatrick,W.G.Martin, & D.Schifter ( Eds. ) ,A research companion to principals and standards For school mathetics ( pp.27-44 ) .Reston, VA:Nationa Council of Teacher of Mathematics.
  33. Cantlon, D. (1998). Kid+conjecture=mathematics power. Teaching Children Mathematics, 5(2), 108-112.
  34. Davis, P. J., Hersh, R., & Marchisotto, E. A. (2011). The mathematical experience.(2nd ed.)
  35. Karge, B.D.,Sandlin,R.A.,& Young,B.L(1993).Analysis of beginning teacher concern data to restructure preservice teacher education. Paper presented at Annual Meeting of theAmerican Educational Research Association. Athlanta:GA.
  36. Kemmis,S.&McTaggart,R.(1998).The action research planner.Victoria,Australia:Deakin University Press.
  37. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.
  38. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, UK: Cambridge University Press.
  39. Lakatos, I. (1978). A renaissance of empiricism in the recent philosophy of mathematics? In J. Worrall & G. Currie (Eds.), Mathematics, science and epistemology (pp. 24-42). Cambridge, UK: Cambridge University Press.
  40. Lin, F. L., & Yu, J. W. (2005).False proposition-As a means for making conjectures in mathematics classrooms. Paper presented at the Asian Mathematics Conference 2005, Singapore July 20-23.
  41. Lin, F.-L., Yang, K.-L., Lee, K.-H., Tabach, M., &Stylianides, G. (2012). Principles of task design for conjecturing and proving. In G. Hanna & M. de Villers(Eds.),proof and proving in mathematics education: The 19th ICMI study (pp.305-326). New York: Springer.
  42. Lin, F.-L.,Yang, K.-L., Lee, K.-H., Tabach, M., & Stylianides, G.(2012). Taskdesigningfor conjecturing and proving: developing principles based on practicaltasks. In M. d. Villiers & G. Hanna(Eds.), Proofs and proving in mathematics education, ICME Study 19: Springer.
  43. Mason, J. et al. (1985). Thinking mathematically. California: Addison-Wesley Publishers.
  44. McNiff,J;Lomax,P. & Whitehead,J.(1996)You and your action research project.London:Routledge.
  45. Stein, M. K., & Lane, S.(1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2, 50–80.
  46. U.S.A.: Birkhauser Boston.
  47. Yerushalmy, M. (1993). Generalization in geometry. In J. L. Schwartz, M. Yerushalmy, and B. Wilson (Eds), The Geometric Supposer, what is it a case of?, (pp. 57–84). Lawrence Erlbaum.
  48. Zumwalt, K. (1990). Beginning professional teachers: The need for a curricular vision of teaching. In Reynolds (Ed),Knowledge base for the beginning teachers,(pp. 173-184), New York: Pergamon Press.