题名 |
電漿表面處理於具垂直異向性磁性薄膜之研究與應用 |
并列篇名 |
Investigation and application of surface plasma treatment on magnetic films with perpendicular anisotropy |
DOI |
10.6843/NTHU.2010.00308 |
作者 |
李建緯 |
关键词 |
表面粗糙度 ; 磁性穿隧接面 ; 垂直異向性 ; 層間交互偶合 ; 磁性圖案化 |
期刊名称 |
清華大學材料科學工程學系學位論文 |
卷期/出版年月 |
2010年 |
学位类别 |
碩士 |
导师 |
賴志煌 |
内容语文 |
英文 |
中文摘要 |
1. Zhu, J.G., Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability. Proceedings of the Ieee, 2008. 96(11): p. 1786-1798. 2. Zabel, H., Progress in spintronics. Superlattices and Microstructures, 2009. 46(4): p. 541-553. 3. Georgiev, D., in “Q-tunnel.” Wikipedia. http://en.wikipedia.org/wiki/File:Q-tunnel.PNG. 4. Yuasa, S. and D.D. Djayaprawira, Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. Journal of Physics D-Applied Physics, 2007. 40(21): p. R337-R354. 5. Julliere, M., TUNNELING BETWEEN FERROMAGNETIC-FILMS. Physics Letters A, 1975. 54(3): p. 225-226. 6. Wang, D.X., et al., 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. Ieee Transactions on Magnetics, 2004. 40(4): p. 2269-2271. 7. Miyazaki, T. and N. Tezuka, GIANT MAGNETIC TUNNELING EFFECT IN FE/AL2O3/FE JUNCTION. Journal of Magnetism and Magnetic Materials, 1995. 139(3): p. L231-L234. 8. Moodera, J.S., et al., LARGE MAGNETORESISTANCE AT ROOM-TEMPERATURE IN FERROMAGNETIC THIN-FILM TUNNEL-JUNCTIONS. Physical Review Letters, 1995. 74(16): p. 3273-3276. 9. Butler, W.H., et al., Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Physical Review B, 2001. 63(Copyright (C) 2010 The American Physical Society): p. 054416. 10. Mathon, J. and A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Physical Review B, 2001. 63(22). 11. Hayakawaa, J., et al., Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeB/MgO/CoFeB magnetic tunnel junctions. Applied Physics Letters, 2006. 89(23). 12. Yuasa, S., T. Nagahama, and Y. Suzuki, Spin-polarized resonant tunneling in magnetic tunnel junctions. Science, 2002. 297(5579): p. 234-237. 13. Yuasa, S., et al., Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials, 2004. 3(12): p. 868-871. 14. Yuasa, S., et al., Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes. Applied Physics Letters, 2006. 89(4). 15. Parkin, S.S.P., et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Materials, 2004. 3(12): p. 862-867. 16. Yuasa, S., et al., Giant tunneling magnetoresistance in fully epitaxial body-centered-cubic Co/MgO/Fe magnetic tunnel junctions. Applied Physics Letters, 2005. 87(22). 17. Ikeda, S., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Applied Physics Letters, 2008. 93(8). 18. Ohmori, H., T. Hatori, and S. Nakagawa, Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature. Journal of Applied Physics, 2008. 103(7). 19. Shi, J., S. Tehrani, and M.R. Scheinfein, Geometry dependence of magnetization vortices in patterned submicron NiFe elements. Applied Physics Letters, 2000. 76(18): p. 2588-2590. 20. Law, R., et al., Magnetoresistance and Switching Properties of Co-Fe/Pd-Based Perpendicular Anisotropy Single- and Dual-Spin Valves. Ieee Transactions on Magnetics, 2008. 44(11): p. 2612-2615. 21. Carvello, B., et al., Sizable room-temperature magnetoresistance in cobalt based magnetic tunnel junctions with out-of-plane anisotropy. Applied Physics Letters, 2008. 92(10). 22. Yoo, I., D.K. Kim, and Y.K. Kim, Switching characteristics of submicrometer magnetic tunnel junction devices with perpendicular anisotropy. Journal of Applied Physics, 2005. 97(10). 23. Mangin, S., et al., Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Materials, 2006. 5(3): p. 210-215. 24. Park, J.H., et al., Co/Pt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy. Journal of Applied Physics, 2008. 103(7). 25. Mitani, S., et al., Fabrication and characterization of L1(0)-ordered FePt/AlO/FeCo magnetic tunnel junctions. Ieee Transactions on Magnetics, 2005. 41(10): p. 2606-2608. 26. Moriyama, T., et al., Magnetic tunnel junctions with L1(0)-ordered FePt alloy electrodes. Journal of Applied Physics, 2004. 95(11): p. 6789-6791. 27. Taniguchi, Y., et al., Theoretical Studies on Spin-Dependent Conductance in FePt/MgO/FePt(001) Magnetic Tunnel Junctions. Ieee Transactions on Magnetics, 2008. 44(11): p. 2585-2588. 28. Yoshikawa, M., et al., Tunnel Magnetoresistance Over 100% in MgO-Based Magnetic Tunnel Junction Films With Perpendicular Magnetic L1(0)-FePt Electrodes. Ieee Transactions on Magnetics, 2008. 44(11): p. 2573-2576. 29. M., K.N.T.N.M.N.M.Y.E.K.T.D. and N.T.K.H. Yoda, Large tunnel magnetoresistance of over 200% in MgO-based magnetic tunnel junction with perpendicular magnetic anisotropy. 11th Joint MMM-Intermag Conference, 2010. 30. Nishiyama, K., et al., Large tunnel magnetoresistance of over 200% in MgO-based magnetic tunnel junction with perpendicular magnetic anisotropy. 11th Joint MMM-Intermag Conference, 2010. EF-07. 31. Wohlfarth, E.P., CURIE TEMPERATURES OF COMPOUNDS OF THE HEAVY RARE-EARTHS AND YTTRIUM WITH COBALT. Journal of Physics F-Metal Physics, 1979. 9(6): p. L123-L128. 32. Lee, C.M., et al., Ultrathin (Gd, Tb)-FeCo Films With Perpendicular Magnetic Anisotropy. Ieee Transactions on Magnetics, 2009. 45(10): p. 3808-3811. 33. Hocheng, H., H.Y. Tsai, and Y.T. Su, Modeling and experimental analysis of the material removal rate in the chemical mechanical planarization of dielectric films and bare silicon wafers. Journal of the Electrochemical Society, 2001. 148(10): p. G581-G586. 34. Jindal, A., S. Hegde, and S.V. Babu, Chemical mechanical polishing of dielectric films using mixed abrasive slurries. Journal of the Electrochemical Society, 2003. 150(5): p. G314-G318. 35. Toyoda, N., S. Houzumi, and I. Yamada, Development of a size-selected gas cluster ion beam system for low-damage processing. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2005. 241(1-4): p. 609-613. 36. Nagato, K., et al., Study of Gas Cluster Ion Beam Planarization for Discrete Track Magnetic Disks. Ieee Transactions on Magnetics, 2008. 44(11): p. 3476-3479. 37. Toyoda, N. and I. Yamada, Gas cluster ion beam equipment and applications for surface processing. Ieee Transactions on Plasma Science, 2008. 36(4): p. 1471-1488. 38. Toyoda, N., et al., Planarization of Bit-Patterned Surface Using Gas Cluster Ion Beams. Ieee Transactions on Magnetics, 2009. 45(10): p. 3503-3506. 39. Toyoda, N., et al., Planarization of amorphous carbon films on patterned substrates using gas cluster ion beams. Journal of Applied Physics, 2009. 105(7). 40. Chappert, C., et al., Planar patterned magnetic media obtained by ion irradiation. Science, 1998. 280(5371): p. 1919-1922. 41. McGrouther, D., J.N. Chapman, and F.W.M. Vanhelmont, Effect of Ga+ ion irradiation on the structural and magnetic properties of CoFe/IrMn exchange biased bilayers. Journal of Applied Physics, 2004. 95(12): p. 7772-7778. 42. Devolder, T., et al., Magnetization reversal in irradiation-fabricated nanostructures. Journal of Applied Physics, 2000. 87(12): p. 8671-8681. 43. Rettner, C.T., et al., Magnetic characterization and recording properties of patterned Co70Cr18Pt12 perpendicular media. Ieee Transactions on Magnetics, 2002. 38(4): p. 1725-1730. 44. McGrouther, D. and J.N. Chapman, Nanopatterning of a thin ferromagnetic CoFe film by focused-ion-beam irradiation. Applied Physics Letters, 2005. 87(2). 45. Fassbender, J. and J. McCord, Magnetic patterning by means of ion irradiation and implantation. Journal of Magnetism and Magnetic Materials, 2008. 320(3-4): p. 579-596. 46. Weller, D., et al., High K-u materials approach to 100 Gbits/in(2). Ieee Transactions on Magnetics, 2000. 36(1): p. 10-15. 47. Kanazawa, T., et al., Reactive ion etching of FePt using inductively coupled plasma. Applied Surface Science, 2008. 254(23): p. 7918-7920. 48. Coffey, K.R., T. Thomson, and J.U. Thiele, Angle dependent magnetization reversal of thin film magnetic recording media. Journal of Applied Physics, 2003. 93(10): p. 8471-8473. 49. Gunther, C.M., et al., Steplike versus continuous domain propagation in Co/Pd multilayer films. Applied Physics Letters, 2008. 93(7). 50. Sbiaa, R., et al., Effect of film texture on magnetization reversal and switching field in continuous and patterned (Co/Pd) multilayers. Journal of Applied Physics, 2009. 106(2). 51. Knepper, J.W. and F.Y. Yang, Oscillatory interlayer coupling in Co/Pt multilayers with perpendicular anisotropy. Physical Review B, 2005. 71(22). |
英文摘要 |
本論文研究主題可分為兩部份。在第一部份中,深入探討鐵鉑薄膜表面粗糙度,及對應Neel coupling的改變。在鍍製完下層垂直磁性穿隧接面(magnetic tunnel junction) 結構至鐵鉑層後,對其表面進行電漿表面處理,之後鍍上氧化鎂層及上層鐵磁層。鐵鉑層的表面粗糙度在過程中獲得改善,然而不同處理條件所對應的Neel coupling變化不大。另一方面,利用氬氣和氧氣混和組成的電漿進行表面處理,我們發現即使以極短時間進行表面處理,上下鐵磁層仍會去耦合(decoupling),另外利用光電子能譜儀 (X-ray photoelectron spectroscopy)及穿透式電子顯微鏡可以證實表面氧化物的存在。在第二部份中,我們成功利用電漿轟擊進行磁性圖案化(magnetic patterning)。這個部份先將試片利用光學顯影方法定義為分隔的小區域,之後再以電漿轟擊定義磁區。由於小區域內磁區被限制,其翻轉行為因而改變。這個利用電漿進行磁性圖案化的製程未來有機會應用於圖騰媒介(patterned media)的開發。 |
主题分类 |
工學院 >
材料科學工程學系 工程學 > 工程學總論 |