题名

建構以腦波評估疼痛程度之分析系統

并列篇名

Developing the Analysis System of Pain Intensity Using EEG

DOI

10.6840/cycu201700132

作者

李芷誼

关键词

腦波 ; 疼痛程度 ; 支持向量機 ; EEG ; pain intensity ; SVM

期刊名称

中原大學生物醫學工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

莊炯承

内容语文

繁體中文

中文摘要

疼痛在每個人的日常生活中是常見的主觀感受,當身體受到傷害性刺激時,大腦就會接收到疼痛的感覺,提醒我們對痛處趕緊處置。臨床上醫生為患者進行疼痛評估,主要是依據患者自身描述疼痛的感受且配合著數字等級刻度尺(NRS)等評估工具回答疼痛程度,才能針對疼痛進行有效的評估及管理,並依據世界衛生組織(WHO)施予疼痛緩解的治療方式,採用階梯原則(Analgesic Ladder),以輕、中和重度疼痛之不同的疼痛程度,給予相應的治療劑量及的強度。然而,對於患有自主意識障礙(DOC)的患者或是因為自身因素而隱瞞自己的疼痛感受之患者,是無法提供確切的資訊,給予醫生對患者進行適切的疼痛緩解。因此針對此部分的患者,若是能將主觀的感覺以客觀的生理訊號進行數值的量化、分析和判斷疼痛程度,輔助臨床上現行的疼痛評估方式,以增加評估疼痛的精準度,減少誤判病情的機率,提升整體疼痛管理的品質。因此,本研究目的是透過腦波訊號的分析,分類出四種不同疼痛程度,藉以輔助醫生對於特殊患者,進行有效的評估級疼痛管理。 本研究方法是使用自製熱刺激系統,對健康受試者誘發出四種不同疼痛程度的感受,分別是無、輕、中和重痛,透過NeuroScan腦電訊號擷取系統,將腦波取下來進行離線訊號分析。訊號分析前會先經過濾波和獨立成分分析(ICA)等預處理,再使用MATLAB軟體撰寫進行功率頻譜密度(PSD)和近似熵(ApEn)的演算分析,並依5個不同的腦區域和10個頻帶的組合後,得到不同區域和頻帶的特徵值,最後使用WEKA的平台對特徵值進行篩選,再以支持向量機(SVM)進行分類四種疼痛程度,結果所得到的分類準確率最高為67.19%。經由本實驗的結果,本研究之系統可分類出四種不同程度的疼痛,期望未來可藉由本雛形系統,提供研究分類疼痛程度的領域作為一個評估參考,建構一個完整的疼痛評估系統,以輔助醫生進行有效的疼痛管理。

英文摘要

Pain is a common perception and subjective in everyone's daily life. when the body feel hurt, the brain will receive the perception of pain then to warn us to do pain relief. The clinician is depending on self-report (eg: NRS) to do the assessment of pain for patients, and give pain relief treatment based on the Analgesic Ladder by World Health Organization. The strength of painkiller administered is divided into three stages (none pain, mild pain, moderate pain and severe pain). However, doctors are not able to do accurate pain assessment when the patients have limited ability in expressing themselves, cognitive impairment or unwilling to give actual information. Therefore, to resolve this problem, physiological signals can be quantitative, analysis and evaluation of pain levels to reach the objective assessment of pain. And increase the accuracy of the assessment to support the current clinical assessment of pain, to improve the quality of the overall pain management. Therefore, the purpose of this study is developing the analysis system of four intensity of pain using EEG, to assist the doctors for special patients, with the effective assessment of pain management. This study used a self-made thermal contact-heat stimulator equipment, to induce four pain thresholds of heat pain potential for subjects. EEG signal was recorded using Neuroscan NuAmps system and to do filter and ICA by offline analysis. Following with power spectral density and approximate entropy were calculated using MATLAB, and according to 5 different brain regions and 10 different frequency bands to obtain the features. Finally, screen the features and SVM to classify the four intensity of pain using WEKA. The result provided up to 67.19% accuracy. In the study, the system can classify four intensity of pain, expected that can be used to provide a field of research for classification of pain as an evaluation reference by the prototype system, to construct a complete pain assessment system to assist the clinician in effective pain management.

主题分类 醫藥衛生 > 醫藥總論
工學院 > 生物醫學工程學系
参考文献
  1. [1] J. D. Loeser, and R.-D. Treede, “The Kyoto protocol of IASP Basic Pain Terminology,” Pain, vol. 137, no. 3, pp. 473-477, 2008.
    連結:
  2. [2] P. H. Berry, and J. L. Dahl, “The new JCAHO pain standards: implications for pain management nurses,” Pain Management Nursing, vol. 1, no. 1, pp. 3-12, 2000.
    連結:
  3. [4] W. H. Organization, Cancer pain relief and palliative care, World Health Organization, Geneva, 1990.
    連結:
  4. [6] G. A. Hawker, S. Mian, T. Kendzerska, and M. French, “Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short‐form mcgill pain questionnaire (sf‐mpq), chronic pain grade scale (cpgs), short form‐36 bodily pain scale (sf‐36 bps), and measure of intermittent and constant osteoarthritis pain (icoap),” Arthritis care & research, vol. 63, no. S11, pp. S240-S252, 2011.
    連結:
  5. [7] C. Schnakers, and N. D. Zasler, “Pain assessment and management in disorders of consciousness,” Current opinion in neurology, vol. 20, no. 6, pp. 620-626, 2007.
    連結:
  6. [8] U. Bingel, and I. Tracey, “Imaging CNS modulation of pain in humans,” Physiology, vol. 23, no. 6, pp. 371-380, 2008.
    連結:
  7. [9] K. Ikeda, “Quantitative evaluation of pain by analyzing non-invasively obtained physiological data with particular reference to joint healing with continuous passive motion,” in Engineering in Medicine and Biology Society, 1995 and 14th Conference of the Biomedical Engineering Society. An International Meeting, Proceedings of the First Regional Conference., IEEE, India, 1995, pp. 3-25.
    連結:
  8. [10] R. Peyron, B. Laurent, and L. Garcia-Larrea, “Functional imaging of brain responses to pain. A review and meta-analysis ” Neurophysiologie Clinique/Clinical Neurophysiology, vol. 30, no. 5, pp. 263-288, 2000.
    連結:
  9. [13] D. Borsook, S. Sava, and L. Becerra, “The pain imaging revolution: advancing pain into the 21st century,” The Neuroscientist, vol. 16, no. 2, pp. 171-185, 2010.
    連結:
  10. [14] P.-F. Chang, L. Arendt-Nielsen, T. Graven-Nielsen, and A. C. Chen, “Psychophysical and EEG responses to repeated experimental muscle pain in humans: pain intensity encodes EEG activity,” Brain research bulletin, vol. 59, no. 6, pp. 533-543, 2003.
    連結:
  11. [15] P.-F. Chang, L. Arendt-Nielsen, T. Graven-Nielsen, P. Svensson, and A. C. Chen, “Topographic effects of tonic cutaneous nociceptive stimulation on human electroencephalograph,” Neuroscience letters, vol. 305, no. 1, pp. 49-52, 2001.
    連結:
  12. [16] A. I. Basbaum, D. M. Bautista, G. Scherrer, and D. Julius, “Cellular and molecular mechanisms of pain,” Cell, vol. 139, no. 2, pp. 267-284, 2009.
    連結:
  13. [17] M. Valeriani, D. Le Pera, D. Niddam, A. C. Chen, and L. Arendt-Nielsen, “Dipolar modelling of the scalp evoked potentials to painful contact heat stimulation of the human skin,” Neuroscience letters, vol. 318, no. 1, pp. 44-48, 2002.
    連結:
  14. [18] L. Garcia-Larrea, “Objective pain diagnostics: clinical neurophysiology,” Neurophysiologie Clinique/Clinical Neurophysiology, vol. 42, no. 4, pp. 187-197, 2012.
    連結:
  15. [19] D. D. Atherton, P. Facer, K. M. Roberts, V. P. Misra, B. A. Chizh, C. Bountra, and P. Anand, “Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts,” BMC neurology, vol. 7, no. 1, pp. 21, 2007.
    連結:
  16. [21] R.-R. Nir, A. Sinai, E. Raz, E. Sprecher, and D. Yarnitsky, “Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest,” Brain research, vol. 1344, pp. 77-86, 2010.
    連結:
  17. [22] S. Shao, K. Shen, K. Yu, E. P. Wilder-Smith, and X. Li, “Frequency-domain EEG source analysis for acute tonic cold pain perception,” Clinical Neurophysiology, vol. 123, no. 10, pp. 2042-2049, 2012.
    連結:
  18. [23] J. E. Brown, N. Chatterjee, J. Younger, and S. Mackey, “Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation,” PLoS One, vol. 6, no. 9, pp. e24124, 2011.
    連結:
  19. [24] M. Vatankhah, V. Asadpour, and R. Fazel-Rezai, “Perceptual pain classification using ANFIS adapted RBF kernel support vector machine for therapeutic usage,” Applied Soft Computing, vol. 13, no. 5, pp. 2537-2546, 2013.
    連結:
  20. [25] I. E. Commission, "IEC 60601-1-6: 2004 Medical electrical equipment - Part 1-6: General requirements for safety - Collateral standard: Usability ", International Electrotechnical Commission, 2004.
    連結:
  21. [28] N. Foldvary-Schaefer, and M. M. Grigg-Damberger, “Identifying Interictal and Ictal Epileptic Activity in Polysomnograms,” Sleep Medicine Clinics, vol. 7, no. 1, pp. 39-58, 2012.
    連結:
  22. [29] A. C. N. Society, “Guideline 1: Minimum technical requirements for performing clinical electroencephalography,” Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society, vol. 23, no. 2, pp. 86, 2006.
    連結:
  23. [31] J. Alexopoulos, D. M. Pfabigan, C. Lamm, H. Bauer, and F. P. S. Fischmeister, “Do we care about the powerless third? An ERP study of the three-person ultimatum game,” Frontiers in Human Neuroscience, vol. 6, pp. 1-9, 2012.
    連結:
  24. [32] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis, Canada: John Wiley & Sons, 2004.
    連結:
  25. [33] A. Delorme, and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of neuroscience methods, vol. 134, no. 1, pp. 9-21, 2004.
    連結:
  26. [34] J. Hickey, Clinical practice of neurological & neurosurgical nursing, Houston, Texas: Wolters Kluwer Health, 2013.
    連結:
  27. [35] W. Geek, Sarah Kay Moll, and H. Bailey. "What is the Motor Cortex? ," http://www.wisegeek.com/what-is-the-motor-cortex.htm.
    連結:
  28. [36] A. C. Chen, and P. Rappelsberger, “Brain and human pain: topographic EEG amplitude and coherence mapping,” Brain topography, vol. 7, no. 2, pp. 129-140, 1994.
    連結:
  29. [37] M. Blöchl, M. Franz, W. H. Miltner, and T. Weiss, “Captured by the pain: Pain steady-state evoked potentials are not modulated by selective spatial attention,” Brain research, vol. 1603, pp. 94-100, 2015.
    連結:
  30. [39] S. M. Pincus, “Approximate entropy: a complexity measure for biological time series data,” in Bioengineering Conference, 1991., Proceedings of the 1991 IEEE Seventeenth Annual Northeast, 1991, pp. 35-36.
    連結:
  31. [41] S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297-2301, 1991.
    連結:
  32. [42] B. Scholkopf, and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond, London, England: MIT press, 2001.
    連結:
  33. [45] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification, National Taiwan University, Taiwan, 2003.
    連結:
  34. [48] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in International Joint Conference on Artificial Intelligence Palais de Congres, Montreal, Quebec, Canada, 1995, pp. 1137-1145.
    連結:
  35. [49] R.-R. Nir, A. Sinai, R. Moont, E. Harari, and D. Yarnitsky, “Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest,” Clinical Neurophysiology, vol. 123, no. 3, pp. 605-612, 2012.
    連結:
  36. [50] W. Peng, L. Hu, Z. Zhang, and Y. Hu, “Changes of spontaneous oscillatory activity to tonic heat pain,” PloS one, vol. 9, no. 3, pp. e91052, 2014.
    連結:
  37. [51] M. Jobert, F. J. Wilson, G. S. Ruigt, M. Brunovsky, L. S. Prichep, W. H. Drinkenburg, and I. P.-E. G. Committee, “Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG),” Neuropsychobiology, vol. 67, no. 3, pp. 127-167, 16 March 2013.
    連結:
  38. [52] E. Bixler, “Sleep and society: an epidemiological perspective,” Sleep Medicine, vol. 10, no. Supplement 1, pp. S3-S6, 5 August, 2009.
    連結:
  39. [53] R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, vol. 9, no. 1, pp. 97-113, 1971.
    連結:
  40. [54] M. Granot, Y. Granovsky, E. Sprecher, R.-R. Nir, and D. Yarnitsky, “Contact heat-evoked temporal summation: tonic versus repetitive-phasic stimulation,” Pain, vol. 122, no. 3, pp. 295-305, 2006.
    連結:
  41. [55] L. C. Beese, D. Putzer, N. Osada, S. Evers, and M. Marziniak, “Contact heat evoked potentials and habituation measured interictally in migraineurs,” The journal of headache and pain, vol. 16, no. 1, pp. 1-12, 6 January, 2015.
    連結:
  42. [57] C. Villemure, and C. M. Bushnell, “Cognitive modulation of pain: how do attention and emotion influence pain processing?,” Pain, vol. 95, no. 3, pp. 195-199, 2002.
    連結:
  43. [58] A. C. N. Society, “Guideline 9A: guidelines on evoked potentials,” American journal of electroneurodiagnostic technology, vol. 23, no. 2, pp. 125-137, 2006.
    連結:
  44. [59] D. Li, K. Puntillo, and C. Miaskowski, “A review of objective pain measures for use with critical care adult patients unable to self-report,” The journal of pain, vol. 9, no. 1, pp. 2-10, 2008.
    連結:
  45. [60] R. C. Coghill, C. N. Sang, J. M. Maisog, and M. J. Iadarola, “Pain intensity processing within the human brain: a bilateral, distributed mechanism,” Journal of neurophysiology, vol. 82, no. 4, pp. 1934-1943, 1999.
    連結:
  46. [61] D. B. Carr, and A. K. Jacox, Acute pain management: operative or medical procedures and trauma clinical practice guideline, Rockville, Maryland: DIANE Publishing, 1997.
    連結:
  47. [62] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain research reviews, vol. 29, no. 2, pp. 169-195, 1999.
    連結:
  48. [63] M. Backonja, E. W. Howland, J. Wang, J. Smith, M. Salinsky, and C. S. Cleeland, “Tonic changes in alpha power during immersion of the hand in cold water,” Electroencephalography and clinical neurophysiology, vol. 79, no. 3, pp. 192-203, 1991.
    連結:
  49. [64] M. Hauck, C. Domnick, J. Lorenz, C. Gerloff, and A. K. Engel, “Top-down and bottom-up modulation of pain-induced oscillations,” Frontiers in human neuroscience, vol. 9, 2015.
    連結:
  50. [3] M. Lynch, “Pain as the fifth vital sign,” Journal of Infusion Nursing, vol. 24, no. 2, pp. 85-94, 2001.
  51. [5] M. McCaffery, Nursing practice theories related to cognition, bodily pain and man-environmental interactions, Los Angeles, CA: UCLA Students' Store, 1968.
  52. [11] G. S. Berns, J. Chappelow, M. Cekic, C. F. Zink, G. Pagnoni, and M. E. Martin-Skurski, “Neurobiological substrates of dread,” Science, vol. 312, no. 5774, pp. 754-758, 2006.
  53. [12] V. Legrain, G. D. Iannetti, L. Plaghki, and A. Mouraux, “The pain matrix reloaded: a salience detection system for the body,” Progress in neurobiology, vol. 93, no. 1, pp. 111-124, 2011.
  54. [20] M. Huber, J. Bartling, D. v. Pachur, S. Woikowsky-Biedau, and S. Lautenbacher, “EEG responses to tonic heat pain,” Experimental brain research, vol. 173, no. 1, pp. 14-24, 2006.
  55. [26] C. Neuroscan, Offline analysis of acquired data (SCAN 4.3–Vol. II, EDIT 4.3).[Software Manual], El Paso, TX, 2003.
  56. [27] G. H. Klem, H. O. Lüders, H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr Clin Neurophysiol, vol. 52, no. 3, 1999.
  57. [30] N. Boutros, S. Galderisi, O. Pogarell, and S. Riggio, Standard electroencephalography in clinical psychiatry: a practical handbook, UK: John Wiley & Sons, 2011.
  58. [38] J. D. Kropotov, Quantitative EEG, event-related potentials and neurotherapy, UK: Academic Press, 2010.
  59. [40] Y. Fusheng, H. Bo, and T. Qingyu, “Approximate entropy and its application to biosignal analysis,” Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling, Volume 2, pp. 72-91, 2001.
  60. [43] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory, Pennsylvania, USA, 1992, pp. 144-152.
  61. [44] L. Wang, Support vector machines: theory and applications, Berlin: Springer Science & Business Media, 2005.
  62. [46] C.-C. Chang, and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, pp. 27, 2011.
  63. [47] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.
  64. [56] 鍾思嘉、龍長風,「修訂情境與特質焦慮量表之研究」,測驗年刊,卷31,頁27-36,1984年