题名

以雙亞硝基鐵錯合物促進亞硝酸根、一氧化氮及過氧亞硝酸根的交互轉換之探討

并列篇名

Interconversion among Nitrite, Nitric Oxide and Peroxynitrite Promoted by Dinitrosyl Iron Complexes

DOI

10.6840/cycu201700558

作者

蔡凱迪

关键词

雙亞硝基鐵錯合物 ; 一氧化氮 ; 亞硝酸根 ; 過氧亞硝酸根 ; 催化 ; dinitrosyl iron complexes ; DNIC ; nitric oxide ; nitrite ; peroxynitrite ; catalyst

期刊名称

中原大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

魯才德

内容语文

繁體中文

中文摘要

本研究成功的利用吡唑(pyrazole)做為配位體,合成出一系列的雙亞硝基鐵錯合物 [(NO)2Fe(-RPyr)2Fe(NO)2] (1-Me for R=Me, 1-Me2 for R=Me2, 1-NH2 for R=NH2, 1-H for R=H, 1-Ph for R=Ph),以及化合物1-Me之還原產物[(NO)2Fe(-RPyr)2Fe(NO)2]1-/2-,以這些為起始物,探討對於三原子分子NO2- (Nitrite)、CS2、CO2等的反應性。 第一部分,利用我們所合成之金屬-吡唑錯合物,以其受阻式路易士酸鹼對之特殊性結構,以及金屬-配位基協同作用之兩概念,來嘗試活化小分子。成功地以錯合物[(NO)2Fe(-MePyr)2Fe(NO)2]活化了NO2- (nitrite),並且最終生成產物[Fe5(μ-1,2-MePyr)4(μ-O)2(NO)8]- (4);以推論之反應機制,將此系統移到含有過量的pyrazole之環境下進行,進而將此活化NO2- (nitrite)的反應,由當量反應轉變成催化反應;並且,對於此反應在有機相以及水相環境的反應性探討。 第二部分,參考過去文獻以[Fe(NO)2]中心來穩定小分子、再加上受阻式路易士酸鹼對活化穩定小分子,以及金屬-配位基協同作用之三概念做為連結,合成出具不同氧化態之雙亞硝基鐵錯合物[(NO)2Fe(-RPyr)2Fe(NO)2]0/1-/2- (1-Me, 2-Me, 3-Me);並以此架構為基礎,探討不同氧化態對於活化小分子CO2以及CS2的反應特性;並且進一步地嘗試活化直線型態N=C=N、N≡C─C以及彎曲型態O=C─C、O=S─C之三原子主體的化合物。 第三部分,利用去氫的吡唑(陽離子為鹼金屬離子),可使{Fe(NO)2}9-{Fe(NO)2}9 隻之dDNIC [(NO)2Fe(-MePyr)2Fe(NO)2]斷裂鐵氮鍵形成單核的{Fe(NO)2}9 mDNIC [(RPyr)2Fe(NO)2]-,並嘗試以其裸露之pyrazole之N端來螯合金屬,初步的結果推測為[(NO)2Fe(μ-MePyr)2Cu(μ-MePyr)2Fe(NO)2] (7),此結果還必須得到晶體結構才能確定;而去氫的吡唑(陽離子為鹼土金屬離子)則無法使dDNIC敲開斷裂成mDNIC。 第四部分,從dDNIC以及RRE的角度切入,可將其視為良好的NO載體,過去文獻曾經探討此類型錯合物與O2反應生成ONOO- (peroxynitrite),嘗試將我們所合成之dDNIC與RRE對O2之反應性探討,此系列的反應得到些初步的結果,還有更多的空間值得探討。 以仿生的角度切入,以各類金屬酶催化NO2-轉變成NO以及攻擊型小分子ONOO-是確實會出現在人體中的,而將無機化學反應導入生物體的探討是值得被關注的。

英文摘要

In this work, dinuclear DNICs containing pyrazolate bridging ligands [(NO)2Fe(-RPyr)2Fe(NO)2] (Pyr = pyrazolate, R = Me, Me2, NH2, H, Ph) and [(NO)2Fe(-RPyr)2Fe(NO)2]1-/2- (R = Me) were successfully synthesized. We probe into the reactivity between dinuclear DNICs and three atoms molecules like NO2- (Nitrite), CS2 or CO2 . First, combining the concept of small molecules stablized and activated by the FLPs and MLC, nitrite was activated by the 1-Me, accompanied with the product of [Fe5(μ-1,2-MePyr)4(μ-O)2(NO)8]- (4). Under excess pyrazole surrounding, we found more nitrite was activated by 1-Me. So that, we discovered a novel mechanism on nitrite reduction improving the equivalent reaction to catalytic reaction by dDNICs. Furthermore, the reactions under organic phase and aqueous phase were investigated in this work. Second, inspired by the characterization of small molecules stablized by [Fe(NO)2] centers.To combine the concept of small molecules stablized and activated by the frustrated lewis pairs (FLPs), and metal-ligand cooperation (MLC), the FLP-like dDNICs [(NO)2Fe(-MePyr)2Fe(NO)2]0/1-/2- (1-Me, 2-Me, 3-Me) were successfully synthesized. It was compared and illustrated to those properties of CS2 and CO2 activation. Moreover, the compound based on three atoms like linear N=C=N, N≡C─C and bended O=C─C, O=S─C were also tried. Third, the reaction of deprotonated pyrazolate (cation for alkali metal ion) with dinuclear DNIC {Fe(NO)2}9-{Fe(NO)2}9 [(NO)2Fe(-MePyr)2Fe(NO)2] generates mononuclear DNIC {Fe(NO)2}9 [(MePyr)2Fe(NO)2]-1. The naked N of pyrazole on produced mDNIC are used to chelate Cu(I) to form [(NO)2Fe(μ-MePyr)2Cu(μ-MePyr)2Fe(NO)2] (7). The opposite of deprotonated pyrazolate (cation for alkaline earth metal ion) cannot transfer dDNIC to mDNIC in this work, and we are still trying to get the single crystal structure to prove this result. Finally, DNICs and RREs were regarded as forms for storage and transport of NO for a long time. Peroxynitrite (ONOO-) was usually generated by metal complex provided NO with O2. We have a prelimunary idea and results on the reaction of dDNICs or RREs with O2, and there is more space worth to explore. In biological system and chemistry, nitrite transformed to nitric oxide by metal catalyst and destructive molecule of peroxynitrite are exist in human body. The investigation of inorganic chemical reaction into organisms is worthy of attention.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 2. Culotta E., Koshland D.E., Science 1992, 258, 1862-1865.
    連結:
  2. 3. Daniel E. Koshland, Jr., Science 1992, 258(5090), 1861.
    連結:
  3. 6. Feelisch, M.; Olson, K. R. Nitric Oxide, 2013, 35, 2-4.
    連結:
  4. 7. Shabnam Hematian; Isabell Kenkel; Tatyana E. Shubina; Maximilian Dürr; Jeffrey J. Liu; Maxime A. Siegler; Ivanovic-Burmazovic; Kenneth D. Karlin J. Am. Chem. Soc., 2015, 137, 6602-6615.
    連結:
  5. 11. W. Robert. Scheidt, J. L. Hoard, J. Am. Chem. Soc. 1973, 95, 8281-8288.
    連結:
  6. 15. Griess, P., Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen”. in German, Chem. Ber. 1879, 12, 426.
    連結:
  7. 18. T.P. Misko, R.J. Schilling, D. Salvemini, W.M. Moore, M.G. Currie, Anal. Biochem., 1993, 214(1), 11-16.
    連結:
  8. 19. Hai-Song Zhu, Yan-Peng Mao, Yu Chen, Xiang-Li Long†, and Wei-Kang Yuan, Korean J. Chem. Eng., 2013, 30(6), 1241-1247.
    連結:
  9. 22. V. Zang and R. V. Eldik, Inorg. Chem., 1990, 29, 1705-1711.
    連結:
  10. 28. Tsun-Wei Shiue, Yen-Hao Chen, Chi-Ming Wu, Gyan Singh, Hsing-Yin Chen, Chen-Hsiung Hung, Wen-Feng Liaw, and Yun-Ming Wang, Inorg. Chem., 2012, 51(9), 5400-5408.
    連結:
  11. 30. Bruce A. Averill, Chem. Rev., 1996, 96(7), 2951-2964.
    連結:
  12. 35. Chih-Chin Tsou, Wan-Lin Yang, and Wen-Feng Liaw, J. Am. Chem. Soc. 2013, 135(50), 18758-18761.
    連結:
  13. 37. Shabnam Hematian, Maxime A. Siegler, and Kenneth D. Karlin, J. Am. Chem. Soc. 2012, 134, 18912-18915.
    連結:
  14. 41. J. Heinecke and P. C. Ford, J. Am. Chem. Soc., 2010, 132, 9240-9243.
    連結:
  15. 45. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., Freeman, B. A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620-1624.
    連結:
  16. 53. Matthew W. Foster and J. A. Cowan, J. Am. Chem. Soc., 1999, 121(17), 4093-4100.
    連結:
  17. 54. Anthony R. Butler, Chem. Rev., 2002, 102(4), 1155-1166.
    連結:
  18. 69. Tsai-Te Lu, Chih-Hao Chen, and Wen-Feng Liaw, Chem. Eur. J., 2010, 16, 8088-8095.
    連結:
  19. 1. J.H.Enemark, R.D.Feltham, Coord. Chem. Rev. 1974, 13, 339-406.
  20. 4. Jonathan S.Stamler, Cell, 1994, 78(6), 931-936.
  21. 5. R. M. J. Palmer, A. G. Ferrige, S. Moncada, Nature, 1987, 327, 524-526.
  22. 8. Garret, R. H. ; Grisham, C. M. Biochemistry 2nd, Harcourt college publishers, 1999 ; p S-31.
  23. 9. Peter C. Ford and Ivan M. Lorkovic, Chem. Rev., 2002, 102, 993-1017.
  24. 10. George B. Richter-Addo, Shelly J. Hodge, Geun-Bae Yi, Masood A. Khan, Tianshu Ma, Eric Van Caemelbecke, Ning Guo, Karl M. Kadish, Inorg. Chem., 1996, 35, 6530-6538.
  25. 12. Subrata Kundu, William Y. Kim, Jeffery A. Bertke, and Timothy H. Warren, J. Am. Chem. Soc. 2017, 139, 1045-1048.
  26. 13. Zeinab Sakhaei, Subrata Kundu, Jane M. Donnelly, Jeffery A. Bertke, William Y. Kim and Timothy H. Warren, Chem. Commun. 2017, 53, 549-552.
  27. 14. Tsai-Te Lu, Show-Jen Chiou, Chun-Yu Chen, and Wen-Feng Liaw, Inorg. Chem. 2006, 45, 8799-8806.
  28. 16. Laura C.Green, David A.Wagner, JosephGlogowski, Paul L.Skipper, John S.Wishnok, Steven R.Tannenbaum, Anal. Biochem, 1982, 126(1), 131-138.
  29. 17. J S Pollock, U Förstermann, J A Mitchell, T D Warner, H H Schmidt, M Nakane, and F Murad, PNAS, 1991, 88(23), 10480-10484.
  30. 20. Yusuf G. Adewuyi, M. Arif Khan, Chemical Engineering Journal, 2016, 304, 793-807.
  31. 21. Yoshimi Kurimura, Ryoji Ochiai, and Niro Matsuura, Bull. Chem. Soc. Jpn., 1968, 41, 2234-2239.
  32. 23. Harm J. Wubs, Antonie A. C. M. Beenackers, Ind. Eng. Chem. Res.,1993, 32(11), 2580-2594.
  33. 24. Isabella Manconi, Peter van der Maas, Piet N.L. Lens, Nitric Oxide, 2006, 15(1), 40-49.
  34. 25. Ya Zhou, Lin Gao, Yin-Feng Xia, and Wei Li, Environ. Sci. Technol., 2012, 46(22), 12640-12647.
  35. 26. Thorsten Schneppensieper, Alicja Wanat, Grazyna Stochel, Sara Goldstein, Dan Meyerstein, and Rudi van Eldik, Eur. J. Inorg. Chem., 2001, 2317-2325.
  36. 27. Michele Gullotti, Sergio Doldi, and Massimiliano Frassoni, Inorg. Chem. 1996, 35(5), 1101-1113.
  37. 29. Kenyatta Cosby, Kristine S Partovi, Jack H Crawford, Rakesh P Patel, Christopher D Reiter, Sabrina Martyr, Benjamin K Yang, Myron A Waclawiw, Gloria Zalos, Xiuli Xu, Kris T Huang, Howard Shields, Daniel B Kim-Shapiro, Alan N Schechter, Richard O Cannon III & Mark T Gladwin, Nature Medicine, 2003, 9(12), 1498-1505.
  38. 31. Anna C. Merklea, and Nicolai Lehnert, Dalton Trans. 2012, 41, 3355-3368.
  39. 32. Svetlana V. Antonyuk, Richard W. Strange, Gary Sawers, Robert R. Eady, and S. Samar Hasnain, PNAS, 2005, 102(34), 12041-12046.
  40. 33. Cameron M. Moore and Nathaniel K. Szymczak, Chem. Sci., 2015, 6, 3375-3377.
  41. 34. Jason A. Halfen, Samiran Mahapatra, Elizabeth C. Wilkinson, Alan J. Gengenbach, Victor G. Young, Jr., Lawrence Que, Jr., and William B. Tolman, J. Am. Chem. Soc. 1996, 118(4), 763-776.
  42. 36. Maria G. Mason, Peter Nicholls, Michael T. Wilson, and Christopher E. Cooper, PNAS, 2006, 103(3), 708-713.
  43. 38. J. Goodwin, T. Kurtikyan, J. Standard, R. Walsh, B. Zheng, D. Parmley, J. Howard, S. Green, A. Mardyukov and D. E. Przybyla, Inorg. Chem., 2005, 44, 2215-2223.
  44. 39. R. K. Afshar, A. A. Eroy-Reveles, M. M. Olmstead and P. K. Mascharak, Inorg. Chem., 2006, 45, 10347-10354.
  45. 40. T. S. Kurtikyan, A. A. Hovhannisyan, A. V. Iretskli and P. C. Ford, Inorg. Chem., 2009, 48, 11236-11241.
  46. 42. Benitez, L. V., Allison, W. S., J. Biol. Chem., 1974, 249(19), 6234-6243.
  47. 43. Leonard, S. E., Reddie, K. G., Carroll, K. S., ACS Chem. Biol., 2009, 4, 783-799.
  48. 44. Brian C. Sanders, Sayed M. Hassan, and Todd C. Harrop, J. Am. Chem. Soc., 2014, 136, 10230-10233.
  49. 46. Goldstein, S., Merenyi, G. Methods Enzymol., 2008, 436, 49-61.
  50. 47. C. E. Richeson, P. Mulder, V. W. Bowry, and K. U. Ingold, J. Am. Chem. Soc., 1998, 120(29), 7211-7219.
  51. 48. Jia Su and John T. Groves, J. Am. Chem. Soc., 2009, 131(36), 12979-12988.
  52. 49. Nhut Giuc Tran, Harris Kalyvas, Kelsey M. Skodje, Takahiro Hayashi, Pierre Moënne-Loccoz, Paige E. Callan, Jason Shearer, Louis J. Kirschenbaum, and Eunsuk Kim, J. Am. Chem. Soc., 2011, 133(5), 1184-1187.
  53. 50. Jessica Fitzpatrick,a Harris Kalyvas,a Jason Shearerb and Eunsuk Kim, Chem. Commun., 2013, 49, 5550-5552.
  54. 51. Kelsey M. Skodje, Paul G. Williarda , and Eunsuk Kim, Dalton Trans., 2012, 41, 7849-7851.
  55. 52. Pankaj Kumar, Yong-Min Lee, Lianrui Hu, Jianwei Chen, Young Jun Park, Jiannian Yao, Hui Chen, Kenneth D. Karlin, and Wonwoo Nam, J. Am. Chem. Soc., 2016, 138(24), 7753-7762.
  56. 55. José C. Toledo, Jr., Charles A. Bosworth, Seth W. Hennon, Harry A. Mahtani, Hector A. Bergonia, and Jack R. Lancaster, Jr., J. Biol. Chem., 2008, 283(43), 28926-28933.
  57. 56. Lewandowska H, Meczyńska S, Sochanowicz B, Sadło J, Kruszewski M., J. Biol. Inorg. Chem., 2007, 12(3), 345-352.
  58. 57. Minghe Lee, Paolo Arosio, Anna Cozzi, and N. Dennis Chasteen, Biochemistry, 1994, 33(12), 3679-3687.
  59. 58. Fu-Te Tsai, Ting-Shen Kuo and Wen-Feng Liaw, J. Am. Chem. Soc., 2009, 131(10), 3426-3427.
  60. 59. Wei-ChihShih, Tsai-TeLu, Li-BoYang, Fu-TeTsai, Ming-HsiChiang, Jyh-FuLee, Yun-WeiChiang, Wen-FengLiaw, J. Inorg. Biol. Chem., 2012, 113, 83-93.
  61. 60. Shih-Wey Yeh, Chih-Wei Lin, Ya-Wen Li, I-Jui Hsu, Chien-Hong Chen, Ling-Yun Jang, Jyh-Fu Lee, and Wen-Feng Liaw, Inorg. Chem., 2012, 51(7), 4076-4087.
  62. 61. Mu-Cheng Hung, Ming-Che Tsai , Gene-Hsiang Lee , and Wen-Feng Liaw, Inorg. Chem., 2006, 45(15), 6041-6047.
  63. 62. Ming-Li Tsai, Chung-Hung Hsieh, and Wen-Feng Liaw, Inorg. Chem., 2007, 46(12), 5110-5117.
  64. 63. Tsai-Te Lu, Hsiao-Wen Huang and Wen-Feng Liaw, Inorg. Chem., 2009, 48(18), 9027-9035.
  65. 64. Ximeng Wang, Eric B. Sundberg, Lijuan Li, Katherine A. Kantardjieff, Steven R. Herron, Mark Lim and Peter C. Ford, Chem. Commun., 2005, 477-479.
  66. 65. Chih-chin Tsou, Wei-Chun Chiu, Chun-Hung Ke, Jia-Chun Tsai, Yun-Ming Wang, Ming-His Chiang, and Wen-Feng Liaw, J. Am. Chem. Soc., 2014, 136(26), 9424-9433.
  67. 66. Fu-Te Tsai, Yu-Ching Lee, Ming-Hsi Chiang, and Wen-Feng Liaw, Inorg. Chem., 2013, 52(1), 464-473.
  68. 67. Fu-Te Tsai, Pei-Lin Chen and Wen-Feng Liaw, J. Am. Chem. Soc., 2010, 132(14), 5290-5299.
  69. 68. Chih-Chin Tsou, Zong-Sian Lin, Tsai-Te Lu and Wen-Feng Liaw, J. Am. Chem. Soc., 2008, 130(50), 17154-17160.
  70. 70. Brian G. Gowenlock, and George B. Richter-Addo, Chem. Rev., 2004, 104, 3315-3340.
  71. 71. Mailer Cameron, Brian G. Gowenlock and Alan S. F, Boyd, J. Chem. Soc., Perkin Trans., 1996, 2, 2271-2274.
  72. 72. Daniel A. Fletcher, Brian G. Gowenlock, Keith G. Orrell, Vladimir Šik, David E. Hibbs, Michael B. Hursthouse and K. M. Abdul Malik, J. Chem. Soc., Perkin Trans., 1997, 2, 721-728.