题名

虛實整合之加工精度與效能優化智能監控系統

并列篇名

Cyber-Physical Intelligent Monitoring System for Machining Accuracy and Performance Optimization

DOI

10.6840/cycu201800112

作者

張人文

关键词

iKM ; CPS ; 工具機 ; 雲端 ; 虛擬平台 ; iKM ; CPS ; Machine ; cloud ; Virtual platform

期刊名称

中原大學機械工程學系學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

王世明

内容语文

繁體中文

中文摘要

本研究發展出一套可在加工前根據實驗建模與演算法同時優化精度、效率及耗能,進而產出適當CNC加工程式的虛實整合系統。該系統也與知識雲端資料庫(iKM)整合,建立雙向資訊收集模組與iKM分析引擎與生產優化模組,使可進一步優化加工程式,以避免加工異常的發生,其中整合多種線上加工監控模組(含:切削異常模組、精度指標模組、機台效能優化模組),執行不同演算法分析以建議最佳的加工參數,同時也會回傳相關設計資料至iKM雲端資料庫,介面系統以Visual C#建立並串接整合所有功能模組及加工機台,收集模擬結果、加工參數與實際切削結果,持續更新iKM的專家資料庫,為未來設計優化的基礎,最後以實際加工驗證比較有經過優化模組與無經過優化模組兩者之差異性,例如以鋁材料之實驗,加工時間從2.6分鐘縮短至1.7分鐘,同時表面精度從0.97μm提升至0.49μm,證明此系統確實可達到精度與效能同步優化之成效。

英文摘要

This study is to develop a system that we can build an optimization of NC programs and predict abnormal processing at pre-process by modeling and algorithm. The system is also integrated with the Intelligent Knowledge Management (IKM) to build a two-way information gathering module and IKM analysis engine and production optimization module to further optimize machining programs to avoid machining anomalies, including the integration of a variety of in-line process control modules (Abnormal Monitoring Control module, Roughness module, Energy Consumption module.). A large of data collected from each module, and each module will use these data to perform different algorithms analysis. After that, the best NC processing will be obtained from the optimization module. Finally, the actual machining verification Compare the difference between optimized module and non-optimized module to prove the reliability of the system. For example, in the experiment of aluminum materials, the processing time was shortened from 2.6 minutes to 1.7 minutes while the surface accuracy was improved from 0.97μm to 0.49μm, which proves that the system can achieve the effect of simultaneous optimization of accuracy and efficiency.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [1] Jens F., Heiner Lasi, Hans-Georg Kemper, “Simulation of production processes involving cyber-physical systems”, Procedia CIRP 62 ( 2017 ) 577 – 582
    連結:
  2. [2] Jeongcheol Lee, Sungbum Jun, Tai-Woo Chang, and Jinwoo Park, “A Smartness Assessment Framework for SmartFactories Using Analytic Network Process”, Sustainability 2017, 9, 794.
    連結:
  3. [3] Kyung-Joon Park, Jaemin Kim, Hyuk Lim, and Yongsoon Eun, “Robust Path Diversity for Network Quality of Servicein Cyber-Physical Systems”, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014.
    連結:
  4. [4]Sergio F,Giancarlo Fortino,Giuseppe Di Fatta,”Cyber-physical systems, internet of things and big data”, Volume 75, October 2017, Pages 82-84.
    連結:
  5. [5] Shiyong Yin, Jinsong Bao, Yiming Zhang, Xiaodi Huang, “M2M Security Technology of CPS Based on Blockchains”, Symmetry 2017, 9(9), 193; doi:10.3390/sym9090193
    連結:
  6. [6] Kumar, S.D., et al. Optimization of process parameters during machining of thixoformed A356-5TiB2 in-situ composite using Design of Experiments. in 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE). 2015.
    連結:
  7. [7] Ahmad, N. and T.V. Janahiraman. A comparison on optimization of surface roughness in machining AISI 1045 steel using Taguchi method, genetic algorithm and particle swarm optimization. in 2015 IEEE Conference on Systems, Process and Control (ICSPC). 2015.
    連結:
  8. [8] Xiuli, F., et al. Research on Predictive Model Surface Roughness in High Speed Milling for Aluminum Alloy 7050-T7451. in 2010 International Conference on Computing, Control and Industrial Engineering. 2010.
    連結:
  9. [9] Eckart Uhlmann, Sascha Piltz, Kai Schauer, “Micro milling of sintered tungsten-copper composite materials”,Journal of Materials Processing echnology,Vol.167,pp.402-407,2005。
    連結:
  10. [11] 鄭茗元,”SKD 61 硬化模具鋼銑削特性之探討”,國立成功大學機械工程研究所碩士論文,2002。
    連結:
  11. [12] Hazza, M.H.F.A., et al. Cutting Temperature and Surface Roughness Optimization in CNC End Milling Using Multi Objective Genetic Algorithm. in 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT). 2012.
    連結:
  12. [14] 蔡睿陞,”工具機加工參數優化與工件表面粗糙度關聯性之研究”, 國立中正大學機械工程系碩士論文,2016。
    連結:
  13. [15] 陳韋任,”工具機振動與加工件表面粗糙度之關聯性探討”,國立中正大學機械工程系碩士論文,2015。
    連結:
  14. [16] 陳傑,”工具機預估工件銑削品質可行性之研究”, 國立中正大學 機械工程系碩士論文,2014。
    連結:
  15. [19] Shiva Abdoli, Daniel T. Semere,” Investigation on Machine Tools Energy Consumptions,” International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering Vol:8 No:6, 2014.
    連結:
  16. [21] M. Mori, M. Fujishima, Y. Inamasu, Y. Oda, “A study on energy efficiency improvement for machine tools,” CIRP Annals -Manufacturing Technology, vol. 60, no. 1, 2011.
    連結:
  17. [24] D.R. Salgado, F.J. Alonso, “An approach based on current and sound signals for in-process tool wear monitoring”, International Journal of Machine Tools and Manufacture Volume: 47, Issue: 14, November, 2007, pp. 2140-2152.
    連結:
  18. [25] Chen, Shang-Liang; Jen, Y.W. “Data fusion neural network for tool condition monitoring in CNC milling machining “, International Journal of Machine Tools and Manufacture Volume: 40, Issue: 3, February, 2000, pp. 381-400.
    連結:
  19. [26] Zhehe Yao, Deqing Mei, Zichen Chen”On-line Chatter detection and identification based on wavelet and support vector machine”,Journal of Materials Processing Tech. Volume: 210, Issue: 5, March 19, 2010, pp. 713-719.
    連結:
  20. [28] Panda, S.S., Singh, A.K., Chakraborty, D., Pal, S.K., “Drill wear monitoring using back propagation neural network”, Journal of Materials Processing Technology, pp.283-290, 2004.
    連結:
  21. [30] 王貫宇, “複合指標加工參數優化及刀具臨界壽命監控智慧系統整合研究”, 私立中原大學機械工程研究所碩士論文,2016。
    連結:
  22. [31] 陳楚河, “CNC工具機加工精度與節能同步優化設計”, 私立中原大學機械工程研究所碩士論文,2016。
    連結:
  23. [32] 李軍逸, “CNC工具機產效暨與節能同步優化設計與空刀率之智能監測研究”, 私立中原大學機械工程研究所碩士論文,2016。
    連結:
  24. [33] 蔡柏承, “新線上顫振監控系統與切削穩定圖輔佐抑制顫振之研究”, 私立中原大學機械工程研究所碩士論文, 2014。
    連結:
  25. [34] 何建鐽, “CNC工具機線上切削異常智能監控與製程優化輔助系統之研究”, 私立中原大學機械工程研究所碩士論文, 2011。
    連結:
  26. [1] Jens F., Heiner Lasi, Hans-Georg Kemper, “Simulation of production processes involving cyber-physical systems”, Procedia CIRP 62 ( 2017 ) 577 – 582
    連結:
  27. [2] Jeongcheol Lee, Sungbum Jun, Tai-Woo Chang, and Jinwoo Park, “A Smartness Assessment Framework for SmartFactories Using Analytic Network Process”, Sustainability 2017, 9, 794.
    連結:
  28. [3] Kyung-Joon Park, Jaemin Kim, Hyuk Lim, and Yongsoon Eun, “Robust Path Diversity for Network Quality of Servicein Cyber-Physical Systems”, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014.
    連結:
  29. [4]Sergio F,Giancarlo Fortino,Giuseppe Di Fatta,”Cyber-physical systems, internet of things and big data”, Volume 75, October 2017, Pages 82-84.
    連結:
  30. [5] Shiyong Yin, Jinsong Bao, Yiming Zhang, Xiaodi Huang, “M2M Security Technology of CPS Based on Blockchains”, Symmetry 2017, 9(9), 193; doi:10.3390/sym9090193
    連結:
  31. [6] Kumar, S.D., et al. Optimization of process parameters during machining of thixoformed A356-5TiB2 in-situ composite using Design of Experiments. in 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE). 2015.
    連結:
  32. [7] Ahmad, N. and T.V. Janahiraman. A comparison on optimization of surface roughness in machining AISI 1045 steel using Taguchi method, genetic algorithm and particle swarm optimization. in 2015 IEEE Conference on Systems, Process and Control (ICSPC). 2015.
    連結:
  33. [8] Xiuli, F., et al. Research on Predictive Model Surface Roughness in High Speed Milling for Aluminum Alloy 7050-T7451. in 2010 International Conference on Computing, Control and Industrial Engineering. 2010.
    連結:
  34. [9] Eckart Uhlmann, Sascha Piltz, Kai Schauer, “Micro milling of sintered tungsten-copper composite materials”,Journal of Materials Processing echnology,Vol.167,pp.402-407,2005。
    連結:
  35. [11] 鄭茗元,”SKD 61 硬化模具鋼銑削特性之探討”,國立成功大學機械工程研究所碩士論文,2002。
    連結:
  36. [12] Hazza, M.H.F.A., et al. Cutting Temperature and Surface Roughness Optimization in CNC End Milling Using Multi Objective Genetic Algorithm. in 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT). 2012.
    連結:
  37. [14] 蔡睿陞,”工具機加工參數優化與工件表面粗糙度關聯性之研究”, 國立中正大學機械工程系碩士論文,2016。
    連結:
  38. [15] 陳韋任,”工具機振動與加工件表面粗糙度之關聯性探討”,國立中正大學機械工程系碩士論文,2015。
    連結:
  39. [16] 陳傑,”工具機預估工件銑削品質可行性之研究”, 國立中正大學 機械工程系碩士論文,2014。
    連結:
  40. [19] Shiva Abdoli, Daniel T. Semere,” Investigation on Machine Tools Energy Consumptions,” International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering Vol:8 No:6, 2014.
    連結:
  41. [21] M. Mori, M. Fujishima, Y. Inamasu, Y. Oda, “A study on energy efficiency improvement for machine tools,” CIRP Annals -Manufacturing Technology, vol. 60, no. 1, 2011.
    連結:
  42. [24] D.R. Salgado, F.J. Alonso, “An approach based on current and sound signals for in-process tool wear monitoring”, International Journal of Machine Tools and Manufacture Volume: 47, Issue: 14, November, 2007, pp. 2140-2152.
    連結:
  43. [25] Chen, Shang-Liang; Jen, Y.W. “Data fusion neural network for tool condition monitoring in CNC milling machining “, International Journal of Machine Tools and Manufacture Volume: 40, Issue: 3, February, 2000, pp. 381-400.
    連結:
  44. [26] Zhehe Yao, Deqing Mei, Zichen Chen”On-line Chatter detection and identification based on wavelet and support vector machine”,Journal of Materials Processing Tech. Volume: 210, Issue: 5, March 19, 2010, pp. 713-719.
    連結:
  45. [28] Panda, S.S., Singh, A.K., Chakraborty, D., Pal, S.K., “Drill wear monitoring using back propagation neural network”, Journal of Materials Processing Technology, pp.283-290, 2004.
    連結:
  46. [30] 王貫宇, “複合指標加工參數優化及刀具臨界壽命監控智慧系統整合研究”, 私立中原大學機械工程研究所碩士論文,2016。
    連結:
  47. [31] 陳楚河, “CNC工具機加工精度與節能同步優化設計”, 私立中原大學機械工程研究所碩士論文,2016。
    連結:
  48. [32] 李軍逸, “CNC工具機產效暨與節能同步優化設計與空刀率之智能監測研究”, 私立中原大學機械工程研究所碩士論文,2016。
    連結:
  49. [33] 蔡柏承, “新線上顫振監控系統與切削穩定圖輔佐抑制顫振之研究”, 私立中原大學機械工程研究所碩士論文, 2014。
    連結:
  50. [34] 何建鐽, “CNC工具機線上切削異常智能監控與製程優化輔助系統之研究”, 私立中原大學機械工程研究所碩士論文, 2011。
    連結:
  51. [10] 顏耀義,”高速銑削 SKD 61 模具鋼表面粗糙度預測模式之探討”,國立屏東科技大學機械工程系碩士論文,2003。
  52. [13] Saurabh, et al. Machining parameter optimization using Taguchi approach. in 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). 2015.
  53. [17] X. Chen, Y. Tang, Congbo Li , Qian Yi ,” Multi-objective Parameter Optimization of Multi-pass CNC Machining” 2015 International Conference on Automation Science and Engineering(CASE).IEEE,2015.
  54. [18] A. Gontarz, S. Züst, L. Weiss , K. Wegener ,’ Energetic machine tool modeling approach for energy consumption prediction”, Institute of Machine Tools and Manufacturing (IWF), Swiss Federal Institute of Technology, Switzerland, 2012
  55. [20] Nancy DIAZ, Seungchoun Choi, Moneer Helu, Yifen Chen, Stephen Jayanathan, Yusuke YASUI, Daeyoung Kong, Sushrut Pavanaskar, and David Dornfeld, “ Machine Tool Design and Operation Strategies for Green Manufacturing,” Proceedings of 4th CIRP International Conference on High Performance Cutting, 2010.
  56. [22] Rad, J.S., Hosseini, E., Zhang, Y., & Chen., “Online tool wear monitoring and estimation using power signals and S-transform.” 2013 Conference on Control and Fault-Tolerant Systems (SysTol).IEEE, 2013.
  57. [23] Rad, J. S. ,Zhang, Y. , Aghazadeh, F. , & Chen, Z. C., “A study on tool wear monitoring using time-frequency transformation techniques.”, Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on. IEEE, 2014.
  58. [27] 林憲茂, “微量潤滑應用於模具鋼高速銑削之刀具壽命機制探討”,機械月刊,第三十四卷第二期,pp.18-36,2008。
  59. [29] 洪良德, “切削刀具學”, 全華科技圖書,2013。
  60. [10] 顏耀義,”高速銑削 SKD 61 模具鋼表面粗糙度預測模式之探討”,國立屏東科技大學機械工程系碩士論文,2003。
  61. [13] Saurabh, et al. Machining parameter optimization using Taguchi approach. in 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE). 2015.
  62. [17] X. Chen, Y. Tang, Congbo Li , Qian Yi ,” Multi-objective Parameter Optimization of Multi-pass CNC Machining” 2015 International Conference on Automation Science and Engineering(CASE).IEEE,2015.
  63. [18] A. Gontarz, S. Züst, L. Weiss , K. Wegener ,’ Energetic machine tool modeling approach for energy consumption prediction”, Institute of Machine Tools and Manufacturing (IWF), Swiss Federal Institute of Technology, Switzerland, 2012
  64. [20] Nancy DIAZ, Seungchoun Choi, Moneer Helu, Yifen Chen, Stephen Jayanathan, Yusuke YASUI, Daeyoung Kong, Sushrut Pavanaskar, and David Dornfeld, “ Machine Tool Design and Operation Strategies for Green Manufacturing,” Proceedings of 4th CIRP International Conference on High Performance Cutting, 2010.
  65. [22] Rad, J.S., Hosseini, E., Zhang, Y., & Chen., “Online tool wear monitoring and estimation using power signals and S-transform.” 2013 Conference on Control and Fault-Tolerant Systems (SysTol).IEEE, 2013.
  66. [23] Rad, J. S. ,Zhang, Y. , Aghazadeh, F. , & Chen, Z. C., “A study on tool wear monitoring using time-frequency transformation techniques.”, Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on. IEEE, 2014.
  67. [27] 林憲茂, “微量潤滑應用於模具鋼高速銑削之刀具壽命機制探討”,機械月刊,第三十四卷第二期,pp.18-36,2008。
  68. [29] 洪良德, “切削刀具學”, 全華科技圖書,2013。