题名

探討鏈黴菌線形質體SCP1上末端連結蛋白與末端蛋白中影響末端複製的胺基酸

并列篇名

The amino acid residues of Tac and Tpc that affect the end replication of Streptomyces SCP1 linear plasmid

DOI

10.6840/cycu201800049

作者

李京儒

关键词

鏈黴菌 ; SCP1 ; 端粒連結蛋白 ; 末端蛋白 ; streptomyce ; SCP1 ; terminal associated protein ; terminal protein

期刊名称

中原大學化學系學位論文

卷期/出版年月

2018年

学位类别

碩士

导师

楊千金

内容语文

繁體中文

中文摘要

鏈黴菌的染色體與部分質體呈線形。DNA複製時由中央的複製起點開始向兩側進行,當複製到末端時會在3’端留下單股缺口,端粒連結蛋白(Tap)會與缺口結合,牽引末端蛋白(TPs)作為引子,完成末端缺口的補齊。在此,Tap扮演著DNA聚合酶的角色;末端蛋白Tpg則作為引子。 少數鏈黴菌質體如S. coelicolor的SCP1端粒序列及末端蛋白和大多數鏈黴菌有所差異,SCP1末端蛋白(Tpc)基因上游具有端粒連結蛋白(Tac)基因,與Tap及Tpg系統相似,因此也可能以相同機制進行末端的修復。我們將Tac、Tap、用蛋白質做引子的Φ29 DNA聚合酶以及具有DNA聚合酶同源性的E. coli Pol II的胺基酸序列做比對,發現有三處位置的天門冬胺酸是四種蛋白共有,其中Asp398、Asp670對應到Φ29 DNA聚合酶和E. coli Pol II與鎂離子結合的位置;在Φ29 DNA聚合酶上的YCDTDS基序(motif)與其活性有關,其中的Thr具有高度保守性。本次研究目標之一是測試Tac與金屬離子結合的天門冬胺酸與YCDTDS基序中的蘇胺酸,將Asp398與Asp670突變成無法與二價金屬離子結合的天門冬醯胺或丙胺酸;Thr669突變成丙胺酸,再以鏈黴菌體內實驗測試,由於鏈黴菌要維持線形質體或染色體複製必須依靠Tac,若Tac失去活性則無法得到線形質體,pLUS894是一個能在鏈黴菌中維持線形複製的迷你質體,我們將三個突變後分別換入pLUS894中的tac,用限制酶AseI線形化後送到鏈黴菌內,抽取單株的質體,結果無法得到質體。 Tpc對鏈黴菌維持線形質體或染色體也極為重要,其主要的功能為引子,可以鍵結在DNA上讓Tac順利進行複製。先前實驗顯示,在Tap與Tpg系統中,Tpg是利用親水性高的第114個蘇胺酸和DNA鍵結。我們利用放射性磷的dG*作為標記,Tpc為引子,Tac為DNA聚合酶進行體外補齊實驗,再用二維TLC片推測Tpc可能利用絲胺酸與DNA鍵結,Tpc總共有13個絲胺酸,將胺基酸序列做親水性分析,結果Ser206為Tpc上較為親水的絲胺酸。本研究第二個目標為定位出Tpc與DNA鍵結的絲胺酸,先將Ser206突變成丙胺酸,再送入鏈黴菌做體內實驗,結果無法得到線形質體;之後將突變成蘇胺酸、酪胺酸以及具有咪唑的組胺酸,測試絲胺酸可否被以上胺基酸取代;另外我們也測試Ser178,將其突變成丙胺酸測試是否會有影響,若Tpc無法鍵結到DNA上則無法維持線形複製,將突變送入鏈黴菌的結果為Ser178換成丙胺酸無法得到線形質體,而Ser206換成上述三種胺基酸仍可以得到線形質體,但換成丙胺酸則無法得到線形質體,初步結果顯示Tpc的Ser206可能不是與DNA鍵結的位置,而丙胺酸的突變可能因為其含有His-tag而失去活性;Ser178還需要做其他突變進行更明確的判斷是否是Tpc與DNA結合的位置。

英文摘要

Some plasmids and chromosomes of Streptomyces are linear. The replication of streptomyces proceeds bidirectionally from central origin to the end of DNA, and leaves a 3’ overhang. Next, terminal asscoiated protein (Tap) links to the 3’ overhang and recruit terminal protein (Tpg) to repair the 3' gap. In this case, Tap serves as a DNA polymerase, and Tpg serves as a primer. Some plasmids, like SCP1, have different telomeric DNA sequence that can’t align with others. The terminal asscoiated protein of SCP1 named Tac, and terminal protein named Tpc. The tac (gene of Tac) is on the upstream of tpc (gene of Tpc). This characteristic is similar to Tap-Tpg system, and therefore they may have the same mechanism of end-patching. We align the amino acid sequence of Tac, Tap, Φ29 DNA polymerase, and E.coli DNA Pol II. The alignmet showed that there are three conservative aspartic acid residues. Two of them have been identified that are the Mg2+ binding site of Φ29 DNA polymerase and E.coli DNA pol II[1,29], and the corresponding positions in Tac are Asp398 and Asp670.The essentialty of these two residues was examined in vivo by mutating the corresponding positions in tac gene in plasmid pLUS892L, a mini linear SCP1 plasmid. The mutants of them named TacD398Q and TacD670A.The results showed that there had no linear plasmids formed. Additionally, Φ29 DNA polymerase has a motif (YCDTDS) to do with protein-primed and polymeration. The threonine is important for its activity. The essentialty of Thr669 of Tac was also tested. The in vivo results suggested that it might be critical. The essential aminio acid residues on Tpc were also examined. We use phosphoamino acid analysis (PAA) to determine that Tpc used serine to bond to the end of DNA. There are thirteen serines in Tpc, we first check Ser206 because of its hydrophilicity. It was mutated to alanine, and named TpcS206A. The in vivo result suggested that Tpc might use Ser206 to bond to DNA end. Further, Ser206 was mutated to histidine, threonine and tyrosine. The in vivo results showed that Ser206 can be replace by those amino acid. The result of TpcS206A might be influence by his-tag, hence there had no linear plasmid formed. We also picked Ser178 to mutate to alanine then had in vivo testing. The result identicated that Ser178 can’t get any linear plasmid. There was an unecpected mutation caused by polymerase chain reaction (PCR), the His135 of Tpc mutated to tyrosine. The in vivo result that His135 might also be critical.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 1.A. J. Berman, S. Kamtekar, J.L. Goodman, José M Lázaro, Miguel de Vega, Luis Blanco, Margarita Salas, Thomas A. Steitz (2007) Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B‐family polymerases. The EMBO Journal 26:3494-3505
    連結:
  2. 2.Bao, K. and S. N. Cohen (2001) Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces.Genes Dev 15(12):1518-27
    連結:
  3. 3.Bao, K. and S. N. Cohen (2003) Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 17(6):774-85
    連結:
  4. 5.Bentley, S. D., Brown, S., Murphy, L. D., Harris, D. E., Quail, M. A., Parkhill, J., Barrell, B. G., McCormick, J. R., Santamaria, R. I., Losick, R., Yamasaki, M., Kinashi, H., Chen, C. W., Chandra, G., Jakimowicz, D., Kieser, H.M., Kieser, T., Chater, K. F. (2004) SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51:1615-1628.
    連結:
  5. 6.Bernad, A., Lázaro, J. M., Salas, M. and Blanco, L. (1990) The highly conserved amino acid sequence motif Tyr-Gly-Asp-ThrAsp-Ser in a-like DNA polymerases is required by phage ϕ29 DNA polymerase for protein-primed initiation and polymerization. Proc. Natl. Acad. Sci. U.S.A. 87:4610-4614
    連結:
  6. 7.Birch, A., Hӓusle, A., Hütter, R. (1990) Genome rearrangement and genetic instability in Streptomyces spp. J Bacteriol 172(8):4138-4142
    連結:
  7. 8.Chang, P. C. and S. N. Cohen (1994) Bidirectional replication from an internal origin in a linear streptomyces plasmid. Science 265(5174):952-4
    連結:
  8. 9.Chen, C. W., Lin, Y. S., Yang, Y. L., Tsou, M. F., Chang, H. M., Kieser, H. M., Hopwood, D. A. (1994) The linear chromosomes of Streptomyces: structure and dynamics. Actinomycetologica 8:103-112
    連結:
  9. 11.Garrod, L.P., et al.:"Antibiotic and Chemotherapy", page 131. Churchill Livingstone, 1981
    連結:
  10. 12.Hirochika, H. and K. Sakaguchi (1982) Analysis of linear plasmids isolated from Streptomyces: association of proteinwith the ends of the plasmid DNA.Plasmid 7(1):59-65
    連結:
  11. 13.Huang, C. H., Lin, Y. S., Yang, Y. L., Huang, S.-W. and Chen, C.W. (1998) The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol Microbiol. 28(5): 905–16
    連結:
  12. 14.Huang, C. H., H. H. Tsai, et al. (2007) The telomere system of the Streptomyces linear plasmid SCP1 represents a novel class. Mol Microbiol. 63(6): 1710–8
    連結:
  13. 15.Huang C. H. (2017) Identification of the two aspartic acid residues involved in the activity of Tap of Streptomyces. Master’s Thesis of Institute of Chemistry. Chung Yuan Christian University.
    連結:
  14. 16.Joesph Sambrook, David W. Russell. Molecular Cloning.
    連結:
  15. 18.Kinashi, H., M. Shimaji-Murayama, et al. (1991) Nucleotide sequence analysis of the unusually long terminal inverted repeats of a giant linear plasmid, SCP1.Plasmid 26(2):123-30
    連結:
  16. 19.Kyte J., Doolittle R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105-132
    連結:
  17. 20.Lin, Y. S., H. M. Kieser, et al. (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10(5): 923-33
    連結:
  18. 21.Mendez, J., Blanco, L., and Salas, M. (1997) Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase. The EMBO journal 16(9): 2519-27
    連結:
  19. 22.Musialowski, M. S., F. Flett, et al. (1994) Functional evidence that the principal DNA replication origin of the Streptomyces ceolicolor chromosome is close to the dnaA-gyrB region. J Bacteriol 176(16):5123-5
    連結:
  20. 24.Pei, J., Kim, B. H., and Grishman, N. V. (2008) PROMALS3D: a tool for multiple protein sequence and structure alignment. Nucleic acids research 36: 2295-2300
    連結:
  21. 25.Redenbach, M., Flett, F., Piendl, W., Glocker, I., Rauland, U., Wafzig, O., Kliem, R., Leblond, P. and Cullum, J. (1993) The streptomyces lividans 66 chromosome contains a 1Mb deldtogenic region flanked by two amplifiable regions. Mol. Gen. Genet. 241:255-262
    連結:
  22. 26.Salas, M. (1991) Protein-priming of DNA replication. Annu Rev Biochem 60:39-71.
    連結:
  23. 27.Salas, M., and de Vaga, M. (2016) Protein-primed replication of Bacteriophage Phi29 DNA.Enzyme 39:137-67
    連結:
  24. 29.Wang F., Yang W. (2009) Structural insight into translesion synthesis by DNA Pol II. Cell 139 (7): 1279–1289
    連結:
  25. 30.Yang C. C., C. H. Huang, et al. (2002) The terminal prteins of linear Streptomyces chromosomes and planmids: a novel class of replication priming proteins. Mol Microbiol 43(2):297-305
    連結:
  26. 31.Yang C. C., C. H. Huang, et al. (2006) In vitro deoxynucleotidylation of the terminal protein of Streptomyces linear chromosomes. Appl Environ Microbiol 72(12):7959-61
    連結:
  27. 32.Yang C. C., W. C. Sun, W. Y. Wang, C. H. Huang, F. S. Lu, M. S. Tseng, C.W. Chen (2013) Mutational analysis of the terminal protein Tpg of Streptomyces chromosomes: identification of the deoxynucleotidylation site. PLoS One 8(2):e56322
    連結:
  28. 33.Yang C. C., S. M. Tseng, C.W. Chen (2015) Telomere-associated proteins add deoxynucleotides to terminal proteins during replication of the telomeres of linear chromosomes and plasmids in Streptomyces. Nucleic Acids Res. 43(13):6373-83
    連結:
  29. 34.Yang C. C., S. M. Tseng, H. Y. Pan, C. H. Huang, C.W. Chen (2017) Telomere associated primase Tap repairs truncated telomeres of Streptomyces. Nucleic Acids Res 45(10): 5838–5849.
    連結:
  30. 35.Zuker M. (2003), Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31 (13), 3406-15
    連結:
  31. 4.Bentley, S. D., Chater, K. F., Cerdeno-Tarraga A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Globe, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murohy, L., Oliver, K., O’Neil, S., Rabbinovitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., Hopwood, D. A.(2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–7
  32. 10.García P, Hermoso JM, García JA, García E, López R, et al. (1986) Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 59-dAMP. J Virol 58: 31–35
  33. 17.Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A. (2000) Parctical Streptomyces genetics, John Innes Foundation.
  34. 23.Pargellis C.A., Nunes-Duby S.E., de Vargas L.M., Landy A. (1988) Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J Biol Chem 263: 7678–7685
  35. 28.Tobias Kieser, Mervyn J. Bibb, Mark J. Buttner, Keith F. Chater, David A. Hopwood (2000) Practical Streptomyces genetics.