题名

研究雙離子型β-羥基丁酸酯纖維薄膜的組織相容性控制

并列篇名

A Study of Zwitterionic Polyhydroxybutyrate Fibrous Membranes with Controlled Cytocompatibility

DOI

10.6840/cycu201600320

作者

許豐發

关键词

β-羥基丁酸酯 ; 雙離子 ; PHB ; zP(4VP-r-ODA) ; electrospinning ; antifouling membranes ; tissue engineering scaffold

期刊名称

中原大學化學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

張雍;費安東

内容语文

英文

中文摘要

於此研究中,電紡絲程序被採用來製備聚羥基丁酸酯(PHB)纖維狀薄膜,並以物理塗布聚(四-乙烯吡啶-丙烯酸十八酯) (zP(4VP-r-ODA))之雙離子型共聚高分子來強化其纖維表面抵抗生物結垢物質的污染或沾粘特性,而塗布量範圍控制在0到2.5 mg/cm2。由電子顯微鏡的膜結構顯示表面孔隙度會隨高分子塗布量的提升而降低,這也可以由膜孔隙度量測來驗證支持。雙離子型共聚高分子批覆於纖維表面的比例可進一步由傅立葉轉換紅外線光譜與X射現光电子能譜的量測來鑒定,其中量化比例可由 zP(4VP-r-ODA)的四級胺基團在402 eV的電子結合能來進行定量分析。由共聚物的塗布可以顯著的降低膜面的水接觸角(由130°到80°)與提高電紡絲纖維的水合量,所形成的水合保護層可以產生非常低的蛋白質吸附。在微觀尺度下,控制共聚物於PHB纖維薄膜最佳化的塗布量0.17 mg/cm2條件下,其牛血清白蛋白吸附量約0.01 mg/cm2。類似的結果也可於溶菌酶與纖維蛋白原這兩種蛋白質中觀察到。在巨觀尺度下,細菌(大腸桿菌)與血球(紅血球、白血球、血小板、全血)貼附可有效降低當共聚物的塗布量0.5 mg/cm2以上。相同的趨勢結果也可在成體纖維母細胞的貼附與生長實驗中觀察到。由本研究成果指出zP(4VP-r-ODA)塗布改質之PHB纖維薄膜可用於組織工程支架來控制細胞生長與組織再生。

英文摘要

In this work, electrospinning process was used to form poly(3-hydroxybutyric acid) (PHB) fibrous membranes. Fibers were then coated with zwitterionic poly(4-vinylpyridine-random-octadecylacrylate) zP(4VP-r-ODA), in order to enhance the resistance of membranes to biofouling. Coating density was in the range 0-2.5 mg/cm2. The structure was characterized by SEM, which showed a significant decreasing of surface porosity with coating density, also supported by the assessment of surface porosity. The presence of zwitterionic polymer onto the fibers was further evidenced by FT-IR and XPS measurements. The later revealed the presence of a peak at a binding energy of 402 eV, ascribed to the quaternary amine of zP(4VP-r-ODA). The copolymer also enabled to importantly decrease the water contact angle (from 130° to 80°) and increase the hydration capacity of electrospun fibers. The formation of a hydration protective layer resulted in very low level of protein adsorption, as it was measured to be around 0.01 mg/cm2 for membrane with the highest coating density, while it was 0.17 mg/cm2 for virgin PHB membrane. Similar results were obtained with lysozyme and fibrinogen proteins. At a microscale, the adhesion of bacteria (Escherichia coli) and that of blood cells – erythrocytes, leukocytes, platelets and whole blood – was drastically reduced for coating density as low as 0.5 mg/cm2. A similar trend was observed with fibroblasts. Taken all together, these results suggests that the zP(4VP-r-ODA) coated PHB fibers could be used as tissue engineering scaffold to control the cell growth and tissue regeneration.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. [1] Meyer, U.; Meyer, Th.; Handschel, J.; Wiesmann, H. P. Fundamentals of Tissue Engineering and Regenerative Medicine, 2009
    連結:
  2. [2] Vacanti, J.; Vacanti, C. A. The History and Scope of Tissue Engineering, 3rd edition, 2007
    連結:
  3. [3] Buddy, D. R.; Allan, S. H.; Frederick, J. S.; Jack, E. L. An introduction to materials in medicine, Academic press, 2013
    連結:
  4. [5] Lysaght, M. J.; Reyes, J. Review : The Growth of Tissue Engineering 7 (2001), 5
    連結:
  5. [7] Lanza, R. P.; Langer, R.; Vacanti, J. Principles of Tissue Engineering, 2nd edition, 2000
    連結:
  6. [8] Fisher, J. P.; Reddi, A. H. Topic in Tissue Engineering, Chapter 5, 2003
    連結:
  7. [9] Baron, V.; Pandit, A. Topic in Tissue Engineering, Chapter 13, 2003
    連結:
  8. [13] Nalwa, H. S. Encyclopedia of Nanoscience and Nanotechnology 7 (2005)
    連結:
  9. [15] Polak, J. M.; Bishop, A. E. New York Academy of Science 1068 (2006), 352-366
    連結:
  10. [16] Partap, S.; Plunkett, N. A.; O’Brien, F. J. Bioreactors in Tissue Engineering Chapter 16, 2010
    連結:
  11. [17] Whitetaker, M. J.; Quirk, R. A.; Howdle, S. M.; Shakesheff, K. M. Journal of Pharmacy and Pharmacology 53 (2001), 1427-1437
    連結:
  12. [20] O’Brien, F. J. Materials Today 14 (2011) 3
    連結:
  13. [22] Amoabediny, G.; Salehi-Nik, N.; Heli, B. Biomaterials Science and Engineering Chapter 7, 2011
    連結:
  14. [23] Chan, B. P.; Leong, K. W. European Spine Journal 17 (2008), 467-479
    連結:
  15. [24] Subia, B.; Kundu, J.; Kundu, S. C. Tissue Engineering Chapter 7, 2010
    連結:
  16. [25] Dunn, J. C. Y.; Chan, W. Y.; Cristini, V.; Kim, J. S.; Lowengrub, J.; Singh, S.; Wu, B. M. Tissue Engineering 12 (2006), 4
    連結:
  17. [26] Amoabediny, G.; Salehi-Nik, N.; Heli, B. Biomaterials Science and Engineering Chapter 7, 2011
    連結:
  18. [27] Steinbüchel, A.; Valentin, H. E. FEMS Microbiology Letters 128 (1995), 219-228
    連結:
  19. [28] Pouton, C. W.; Akhtar, S. Advance Drug Delivery Reviews 18 (1996), 133-162
    連結:
  20. [29] Jendrossek, D.; Handrick, R. Annual Review of Microbiology 56 (2002), 403-432
    連結:
  21. [35] Tucke, N.; Stanger, J. J.; Staiger, M. P.; Razzaq, H.; Hofman, K. Journal of Engineered Fibers and Fabrics, 2012
    連結:
  22. [37] Teo, W. E.; Ramakrishna, S. Nanotechnology 17 (2006), 89-106
    連結:
  23. [38] Zander, N. E. Polymers 5 (2013), 19-44
    連結:
  24. [48] Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S. Biomaterials 29 (2008), 4285-4291
    連結:
  25. [60] Yu, Q.; Zhang, Y.; Wang, H.; Brash, J.; Chen, H. Acta Biomaterialia 7 (2011), 1550-1557
    連結:
  26. [65] Ulman, A. Chemical Reviews 96 (1996), 1533-1554
    連結:
  27. [68] Chang, Y.; Ko, C. Y.; Shih, Y. J.; Quémener, D.; Deratani, A.; Wei, T. C.; Wang, D. M.; Lai, J, Y. Journal of Membrane Science 345 (2009), 160-169
    連結:
  28. [75] Schlenoff, J. B. Langmuir 30 (2014), 9625-9636
    連結:
  29. [78] Iwasaki, Y.; Ishihara, K. Analytical and Bioanalytical Chemistry 381 (2005), 534-546
    連結:
  30. [80] Yang, W.; Liu, S.; Bai, T.; Keefe, A. J.; Zhang, L.; Ella-Menye, J. R.; Li, Y.; Jiang, S. Nano Today 9 (2014), 10-16
    連結:
  31. [85] Chiang, Y. C.; Chang, Y.; Higuchi, A.; Chen, W. Y.; Ruaan, R. C. Journal of Membrane Science 339 (2009), 151-159
    連結:
  32. [87] Chang, Y.; Chen, S.; Yu, Q.; Zhang, Z.; Bernards, M.; Jiang, S. Biomacromolecules 8 (2007), 122-127
    連結:
  33. [88] Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S. Langmuir 22 (2006), 2222-2226
    連結:
  34. [89] Shih, Y. J.; Chang, Y. Langmuir 26 (2010), 17286-17294
    連結:
  35. [90] Lalani, R.; Liu, L. Biomacromolecules 13 (2012), 1853-1863
    連結:
  36. [91] Emerick, E.; Grant, S.; Bernards, M. Chemical Engineering Process Tech. 1 (2013), 1003
    連結:
  37. [103] Ran, F.; Nie, S.; Zhao, W.; Li, J.; Su, B.; Sun, S.; Zhao, C. Acta Biomaterialia 7 (2011), 3370-3381
    連結:
  38. [112] Brinker, C. J. Mrs Publication (2004), 631-640
    連結:
  39. [118] Ye, Y. S.; Chen, W. Y.; Huang, Y. J.; Cheng, M. Y.; Yen, Y. C.; Cheng, C. C.; Chang, F. C. Journal of Membrane Science 362 (2010), 29-37
    連結:
  40. [4] Vacanti, C. A. Journal of Cellular and Molecular Engineering 3 (2006), 569-576
  41. [6] Brochhausen C.; Kirkpatrict, C. J.; Tissue Science and Engineering 3 (2012), 2157-7552
  42. [10] Murphy, C. M.; O’Brien, F. J.; Little, D. G.; Schindeler, A. European Cells and Materials 26 (2013) 120-132
  43. [11] Elbert, D. L. Current Opinion in Biology 22 (2011), 674-680
  44. [12] Caplan, A. I. Journal of Cellular Psychology 213 (2007), 341-347
  45. [14] Cazjka, C. A.; Drake, C. J. Tissue Engineering 21 (2005), 1-2
  46. [18] Lee, K.; Silva, E. A.; Mooney, D. J. Journal of the Royal Society Interface 8 (2011), 153-170
  47. [19] Yang, N.; Zhang, H.; Shi, L.; Hu, X.; He, Y.; Chen, L.; Zhang, Q.; Zhao, K. Reactive and Functional Polymers 100 (2016), 73-82
  48. [21] Zhang, X.; Bogdanowicz, D.; Erisken, C.; Lee, N. M.; Lu, H. H. Journal Shoulder Elbow Surg 21 (2012), 266-277
  49. [30] Chen, G. Q.; Wu, Q. Biomaterials 26 (2005), 6565-6578
  50. [31] Guerin, P.; Renard, E.; Langlois, V. Plastic from Bacteria : Natural Functions and Applications 14 (2010)
  51. [32] Ean, D. H.; Lee, W. H.; Sudesh, K. Malaysian Journal of Microbiology 8 (2012), 156-163
  52. [33] Cheng, M. L.; Chen, P. Y.; Lan, C. H.; Sun, Y. M. Polymer 52 (2011), 1391-1401
  53. [34] Cheng, M. L.; Lin, C. C.; Su, H. L.; Chen, P. Y.; Sun, Y. M. Polymer 49 (2008), 546-553
  54. [36] Leach, M. K.; Feng, Z. Q.; Tuck, S. J.; Corey, J. M. Journal of Visualized Experiments 47 (2011)
  55. [39] Angammana, C. J.; Jayaram, S. H. Particulate Science and Technology 34 (2016), 72-82
  56. [40] Doergens, A.; Roether, J. A.; Dippold, D.; Boccaccini, A. R.; Schubert, D. W. Materials Letters 140 (2015), 99-102
  57. [41] Philips, O. E.; Jenkins, M.; Stamboulis, A. Polymers 4 (2012), 1331-1348
  58. [42] Lannutti, J.; Reneker, D.; Ma. T.; Tomasko, D.; Farson, D. Materials Science and Enginnering C 27 (2007), 504-509
  59. [43] Gudkova, V.; Krumme, A.; Märtson, T.; Rikko, M.; Tarassova, M.; Viirsalu, M. Journal of Electrostatics 72 (2014), 433-436
  60. [44] Hadjizadeh, A.; Ajji, A.; Bureau, M. N. Journal of The Mechanical Behavior of Biomedical Materials 4 (2011), 340-351
  61. [45] Wade, R. J.; Burdick, J. A. Nano Today 9 (2014), 722-742
  62. [46] Riboldi, S. A.; Sampaolesi, M.; Neuenschwander, P.; Cossu, G.; Mantero, S. Biomaterials 26 (2005), 4606-4615
  63. [47] Hu, X,; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Journal of Controlled Release 185 (2014), 12-21
  64. [49] Sin, M. C.; Chen, S. H.; Chang, Y. Polymer Journal 46 (2014), 436-443
  65. [50] Leduc, E. H.; Holt, J. The Journal of Cell Biology 26 (1965), 137-155
  66. [51] Cheng, X.; Canavan, H. E.; Stein, M. J.; Hull, J. R.; Kweskin, S. J.; Wagner, M. S.; Somorjai, G. A.; Castner, D. G.; Ratner, B. D. Langmuir 21 (2005), 7833-7841
  67. [52] Trinh, P.; Atzet, S.; Curtin, S.; Ratner, B. D. Journal of Undergraduate Research in Bioengineering (2007), 98-104
  68. [53] Yoshikawa, C.; Goto, A.; Tsujii, Y.; Fukuda, T.; Kimura, T.; Yamamoto, K.; Kishida, A. Macromolecules 39 (2006), 2284-2290
  69. [54] Atzet, S.; Curtin, S.; Trinh, P.; Bryant, S.; Ratner, B. D. Biomacromolecules 9 (2008), 3370-3377
  70. [55] Deng, J.; Ren, T.; Zhu, J.; Mao, Z.; Gao, C. Regenerative Biomaterials (2014), 17-25
  71. [56] Mrabet, B.; Nguyen, M. N.; Majbri, A.; Mahouche, S.; Turmine, M.; Bakhrouf, A.; Chehimi, M. M. Surface Science 603 (2009), 2422-2429
  72. [57] Nogueira, N.; Conde, O.; Miñones, M.; Trillo, J. M.; Miñones Jr., J. Journal of Colloid and Interface Science 385 (2012), 202-210
  73. [58] Droumaguet, B. L.; Lacombe, R.; Ly, H. B.; Guerrouache, M.; Carbonnier, B.; Grande, D. Polymer 55 (2014), 373-379
  74. [59] Chen, Q.; Zhang, D.; Somorjai, G.; Bertozzi, C. R. Journal of the American Chemical Society 121 (1999), 446-447
  75. [61] Prime, K. L.; Whitesides, G. M. Science 252 (1991), 1164-1167
  76. [62] Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. Langmuir 8 (1992), 1330-1341
  77. [63] Prime, K. L.; Whitesides, G. M.; Journal of the American Chemical Society 115 (1993), 10714-10721
  78. [64] Roosjen, A.; Mei, H. C.; Busscher, H. J.; Norde, W. Langmuir 20 (2004), 10949- 10955
  79. [66] Rundqvist, J.; Hoh, J. H.; Haviland, D. B. Langmuir 21 (2005), 2981-2987
  80. [67] Cerruti, M.; Fissolo, S.; Carraro, C.; Ricciardi, C.; Majumdar, A.; Maboudian, R. Langmuir 24 (2008), 10646-10653
  81. [69] Hashim, N. A.; Liu, F.; Li, K. Journal of Membrane Science 345 (2009), 134-141
  82. [70] Chang. Y.; Shih, Y. J.; Ko, C. Y.; Jhong, J. F.; Liu, Y. L.; Wei, T. C. Langmuir 27 (2001), 5445-5455
  83. [71] Casadio, Y. S.; Brown, D. H.; Chirila, T. V.; Kraatz, H. B.; Baker. M. V. Biomacromolecules 11 (2010), 2949-2959
  84. [72] Sin, M. C.; Sun, Y. M.; Yao, C. L.; Chou, C. J.; Tseng, H. W.; Zheng, J.; Chang, Y. International Journal of Polymeric Materials and Polymeric Biomaterials 64 (2015), 865-878
  85. [73] Mrksich, M.; Whitesides, G. M. Journal of the American Chemical Society 23 (1997), 361-373
  86. [74] Liu, S.; Armes, S. P. Angewandte Chemical International Edition 41 (2002), 1413-1416
  87. [76] Ishihara, K.; Oshida, H.; Endo, Y.; Ueda, T.; Watanabe, A.; Nakabayashi, N. Journal of Biomedical Materials Research 26 (1992), 1543-1552
  88. [77] Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J. Chemical Communications 46 (2010), 1479-1481
  89. [79] Cao, Z.; Jiang, S. Nano Today 7 (2012), 404-413
  90. [81] Zhang, Z.; Chen, S.; Jiang, S. Biomacromolecules 7 (2006), 3311-3315
  91. [82] Zhang, Z,; Chao, T.; Chen, S.; Jiang, S. Langmuir 22 (2006), 10072-10077
  92. [83] Bertok, T.; Šediva, A.; Filip, J.; Ilcikova, M.; Kasak, P.; Velic, D.; Jane, E.; Mravcová, M.; Rovenskỳ J.; Kunzo, P.; Lobotka, P.; Šmatko, V.; Vikartovská, A.; Tkac, J. Langmuir 31(2015), 7148-7157
  93. [84] Cao, B.; Tang, Q.; Li, L.; Lee, C. J.; Wang, H.; Zhang, Y.; Castaneda, H.; Cheng, G. Chemical Science 6 (2015), 782-788
  94. [86] Sin, M. C.; Sun, Y. M.; Chang, Y. ACS Applied Materials and Interface 6 (2014), 861-873
  95. [92] Tasso, M.; Giovanelli, E.; Zala, D.; Bouccara, S.; Fragola, A.; Hanafi, M.; Lenkei, Z.; Pons, T.; Lequeux, N. American Chemical Society 9 (2015), 11479-11489
  96. [93] Uyama, Y.; Kato, K.; Ikada, Y. Advance in Polymer Science 137 (1998), 1-39
  97. [94] Uchida, S. Encyclopedia of Polymeric Nanomaterials (2013)
  98. [95] Os, M. T. Surface Modification by Plasma Polymerization: Film Decomposition, Tailoring of Surface Properties and Biocompatibility 7 (1970), 77-97
  99. [96] Yuan, S. J.; Liu, C. K.; Pehkonen, S. O.; Bai, R. B.; Neoh, K. G.; Ting, Y. P.; Kang, E. T. Taylor and Francis 25 (2009), 109-125
  100. [97] Zhao, X. D.; Fan, X. H.; Chen, X. F.; Chai, C. p.; Zhou, Q. F. Journal of Polymer Science : Part A : Polymer Chemistry (2006), 4656-4667
  101. [98] Zammarelli, N.; Luksin, M.; Raschke, H.; Hergenröder, R.; Weberskirch, R. Langmuir 29 (2013), 12834-12843
  102. [99] Paoprasert, P.; Boonthong, W.; Kookarinrat, C.; Chantarasiri, N. Science Asia 40 (2014), 224-231
  103. [100] Burtovyy, O.; Klep, V.; Turel, T.; Gowayed, Y.; Luziov, I. American Chemical Society 22 (2009), 289-305
  104. [101] Liu, S. X.; Kim, J. T.; Kim, S. Journal of Food Science 73 (2008), 143-150
  105. [102] Lou, X.; Detrembleur, C.; Pagnoulle, C.; Jérôme, R.; Bocharova, V.; Kiriy, A.; Stamm, M. Advance Materials 16 (2004), 2123-2127
  106. [104] Huang, J.; Xue, J.; Xiang, K.; Zhang, X.; Chang, C.; Sung, S.; Zhao, C. Colloids and Surfaces Biointerfaces 88 (2011), 315-324
  107. [105] Venault, A.; Wu, J. R.; Chang, Y.; Aimar, P. Journal of Membrane Science 470 (2014), 18-29
  108. [106] Venault, A.; Ballad, M. R. B.; Liu, Y. H.; Aimar, P.; Chang, Y. Journal of membrane Science 477 (2015), 101-114
  109. [107] Toncheva, A.; Mincheva, R.; Kancheva, M.; Manolova, N.; Rashkov, I.; Dubois, P.; Markova, N. European Polymer Journal 75 (2016), 223-233
  110. [108] Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Advance Material 11 (1999), 579-585
  111. [109] Fontecave, T.; Boissiere, C.; Baccile, N.; Plou, F. J.; Sanchez, C. Chemistry of Materials 25 (2013), 4671-4678
  112. [110] Grosso, D.; Cagnol, F.; Soller-Illia, G. J. A. A.; Crepaldi, E. L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Advance Functional Materials 14 (2004), 309-322
  113. [111] Mahoney, L.; Koodali, R. T. Materials 7 (2014), 2697-2746
  114. [113] T. Wong, J.A. McGrath and H. Navsaria, British Journal of Dermatology 156 (2007), 1149-1155
  115. [114] Bayari, S.; Severcan, F. Journal of Molecular Structure 744-747 (2005), 529-534
  116. [115] Wróbel-Kwiatkowska, M.; Żuk, M.; Szopa, J.; Dymińska, L.; Mączka, M.; Hanuza, J. Spectrochimica Acta Part A 73 (2009), 286-294
  117. [116] Pandian, S. R. K.; Deepak, V.; Kalishwaralal, K.; Muniyandi, J.; Rameshkumar, N.; Gurunathan, S. Colloids and Surface B: Biointerfaces 74 (2009), 266-273
  118. [117] Venault, A,; Trinh, K. M.; Chang, Y. Journal of Membrane Science 501 (2016), 68-78
  119. [119] Lebleu, N.; Roques, C.; Aimar, P.; Causserand, C. Journal of Membrane Science 326 (2009), 178-185
  120. [120] Chen, S.; Shi, J.; Xu, X.; Ding, J.; Zhong, W.; Zhang, L.; Xing, M.; Zhang, L. Colloids and Surfaces B : Biointerfaces 140 (2016), 574-582