题名

旋轉填充床中醇胺混合深共熔溶劑捕獲二氧化碳與其模擬

并列篇名

Simulation and Experiment of CO2 Capture by a Mixture of Alkanolamine and Deep Eutectic Solvent in a Rotating Packed Bed

DOI

10.6840/cycu201700516

作者

張剛耀

关键词

旋轉填充床 ; 二氧化碳捕捉 ; 醇胺 ; 化學吸收法 ; rotating packed packed ; CO2 capture ; alkanolamine ; chemical absorption

期刊名称

中原大學化學工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳昱劭

内容语文

繁體中文

中文摘要

本研究於旋轉填充床中利用化學吸收法捕捉二氧化碳,吸收劑為2-甲基乙醇胺(2-methylamineethanol, MMEA)混合深共熔溶劑(deep eutectic solvent, DES)與水,其中深共熔溶劑為氯化膽鹼/乙二醇,探討轉速、氣體流率、MMEA濃度及吸收劑中深共熔溶劑與水在不同比例下,觀察二氧化碳移除率與KGa的變化,並利用Aspen Plus及理論法進行再生程序模擬探討醇胺混合非水溶劑之再生能耗,計算不同配方下的再生能耗,找出最佳吸收配方與操作條件,最後再與其他文獻做比較。 實驗結果顯示,移除率隨著醇胺濃度提升而增加,隨氣體流率增加而下降, 在600~1800 rpm時,移除率隨轉速上升。在60wt% MMEA水溶液混合深共熔溶劑中,深共熔溶劑含量由0wt%增加至30wt%時,移除率隨之上升,但若繼續增加至40wt%時,移除率則會下降。模擬再生程序結果顯示,Aspen Plus與理論方法計算再生能耗之結果相近,再生能量皆隨吸收劑中醇胺濃度及深共熔溶劑提升而下降。 綜合吸收劑實驗與再生能耗計算之結果,本實驗最佳吸收劑配方為60wt% MMEA/30wt% DES/10wt% H2O,在氣體流率為50 L/min、液體流率為0.1 L/min、溫度為50°C及轉速2400 rpm,移除率及KGa可達93.36%和10.5 1/s,移除率及KGa比30wt% MEA水溶液分別高37.6%和200%,再生能量則可由3.57 GJ/ton CO2降至2.09 GJ/ton CO2,此結果顯示MMEA水溶液混合深共熔溶劑在旋轉填充床中捕捉二氧化碳有極大的潛力。

英文摘要

In this study, a mixture of 2-methylethanolamine (MMEA) solution with deep eutectic solvent (DES) of choline chloride (ChCl) and ethylene glycol (EG) was used as an absorbent to capture carbon dioxide from gas stream in a rotating paced bed. The effect of rotating speed, gas flow rate, concentration of alkanolamine and the ratio of DES and water in the absorbent on carbon dioxide removal efficiency (E%), mass transfer coefficient (KGa) was investigated. Additionally, the regeneration energy of absorbent was estimated by Aspen Plus and theoretical method. Experimental results showed that CO2 removal efficiency increased with increasing concentration of alkanolamine and rotating speed ranging between 600 and 1800 rpm, but decreased with increasing gas flow rate. Moreover, adding 30wt% DES in 60wt% MMEA solution could effectively enhance CO2 removal efficiency. Calculated results showed that specific regeneration energy of Aspen Plus and theoretical method is approximate. Specific regeneration energy decreased with increasing concentration of alkanolamine and DES. In this study, an optimum composition of absorbent of 60wt% MMEA/30wt% DES/10wt% H2O was obtained. The removal efficiency and KGa of the proposed absorbent were 93.36 % and 10.5 1/s at gas flow rate of 50 L/min, liquid flow rate of 0.1 L/min, temperature of 50°C and rotating speed of 2400 rpm. Compared with 30wt% MEA solution, the removal efficiency and KGa of the proposed absorbent were increased from 68% to 93.36% and 3.51 to 10.5 1/s while the regeneration energy can be reduced from 3.57 GJ/ton CO2 to 2.09 GJ/ton CO2. This result shows that MMEA solution mixed with DES has a great potential for CO2 capture process in a RPB.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. Abbott, A.P., Al-Barzinjy, A.A., Abbott, P.D., Frisch, G., Harris, R.C., Hartley, J., Ryder, K.S., 2014. Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3-6H2O and urea,” Physical Chemistry Chemical Physics 16, 9047-9055.
    連結:
  2. Abbott, A.P., Barron, J.C., Ryder, K.S., Wilson, D., 2007. Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chemistry - A European Journal 13, 6495-6501.
    連結:
  3. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., 2004. Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures. Inorganic Chemistry 43, 3447-3452.
    連結:
  4. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V., 2003. Novel solvent properties of choline chloride/urea mixtures. Chemical Communication, 70-71.
    連結:
  5. Afkhamipour, M., Mofarahi M., 2014. Sensitivity analysis of the rate-based CO2 absorber model using aminesolutions (MEA, MDEA and AMP) in packed columns. International Journal of Greenhouse Gas Control 25, 9-22.
    連結:
  6. Ali, B.S., Aroua, M.K., 2004. Effect of piperazine on CO2 loading in aqueous solutions of MDEA at low pressure. International Journal of Thermophysics 25, 1863-1970.
    連結:
  7. Ali, E., Hadj-Kalia, M.K., Mulyono, S., Alnashef, I., Fakeeha, A., Mjalli, F., Hayyanc A., 2014. Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng–Robinson equation of state. Chemical Engineering Research and Design 92, 1898-1906.
    連結:
  8. Azizi, N., Batebi, E., Bagherpour, S., Ghafuri, H., 2012. Natural deep eutectic salt promoted regioselective reduction of epoxides and carbonyl compounds. Royal Society of Chemistry Advances 2, 2289- 2293.
    連結:
  9. Barbarossa, V., Barzagli, F., Mani, F., Lai, S., Stoppionic, P., Vangaa, G., 2013.Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration. The Royal Society of Chemical 3, 12349-12355.
    連結:
  10. Barzagli F., Mania F., Peruzzini M., 2013. Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP). International Journal of Greenhouse Gas Control 16, 217-223.
    連結:
  11. Burns, J.R., Jamil, J.N., Ramshaw, C., 2000. Process intensification: operating characteristics of rotating packed beds — determination of liquid hold-up for a high-voidage structured packing. Chemical Engineering Science 55, 2401-2415.
    連結:
  12. Burns, J.R., Ramshaw, C., 1996. Process intensification: Visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science 51, 1347-1352.
    連結:
  13. Rao, D.P., Bhowal, A., Goswami, P. S., 2004. Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Industrial & Engineering Chemistry Research 43, 1150-1162.
    連結:
  14. Chakma, A., 1997. CO2 capture processes-Opportunities for improved energy efficiencies. Energy Conversion and Management 38, 51-56.
    連結:
  15. Chang, E.E., Pan, S.Y., Chen, Y.H., Tan, C.S., Chiang, P.C., 2012. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. Journal of Hazardous Materials, 97-106.
    連結:
  16. Chen, J., Li, Y., Wang, Y., Yun, J., Cao, D., 2004. Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Materials Research Bulletin 39, 185-194.
    連結:
  17. Chen, Y.S., 2011. Correlations of Mass Transfer Coefficients in a Rotating Packed Bed, Industrial Engineering Chemistry Research 50, 1778-1785.
    連結:
  18. Chen, Y.S., Lin, C.C., Liu, H.S., 2005. Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and Non-Newtonian Fluids. Industrial Engineering Chemistry Research 44, 1043-1051.
    連結:
  19. Chen, Y.S., Lin, C.C., Liu, H.S., 2005. Mass Transfer in a Rotating Packed Bed with Various Radii of the Bed. Industrial Engineering Chemistry Research 44, 7868-7875.
    連結:
  20. Chen, Y.S., Lin, F.Y., Lin, C.C., Tai, Y.D., Liu, H.S., 2006. Packing Characteristics for Mass Transfer in a Rotating Packed Bed. Industrial Engineering Chemistry Research 45, 6846-6853.
    連結:
  21. Chen, Y.S., Liu, H.S., 2002. Absorption of VOCs in a Rotating Packed Bed. Industrial Engineering Chemistry Research 41, 1583-1588
    連結:
  22. Cheng, H.H., Lai, C.C., Tan, C.S., 2013. Thermal regeneration of alkanolamine solutions in a rotating packed bed. International Journal of Greenhouse Gas Control 16, 206–216.
    連結:
  23. Cheng, H.H., Shen, J.F., Tan, C.S., 2010. CO2 capture from hot stove gas in steel making process. International Journal of Greenhouse Gas Control 4, 525–531.
    連結:
  24. Cheng, H.H., Tan, C.S., 2011. Removal of CO2 from indoor air by alkanolamine in a rotating packed bed. Separation and Purification Technology 82, 156–166.
    連結:
  25. Chiang, C.Y., Lee, D.W., Liu, H.S., 2017. Carbon dioxide capture by sodium hydroxide-glycerol aqueous solution in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers 72, 29-36.
    連結:
  26. Chiang, C.Y., Liu, Y.Y., Chen, Y.S., Liu, H.S., 2012. Absorption of Hydrophobic Volatile Organic Compounds by a Rotating Packed Bed. Industrial & Engineering Chemistry Research 51, 9441-9445.
    連結:
  27. Dash, S.K., Samanta, A.N., Bandyopadhyay, S.S., 2011. Solubility of Carbon dioxide in aqueous of 2-amino-2-methyl-1-propanol and piperazine. Fluid Phase Equilibria 307, 166-174.
    連結:
  28. Fischer, V., 2015. Properties and Applications of Deep Eutectic Solvents and Low-Melting Mixtures. PhD dissertation, Universitat Regensburg.
    連結:
  29. Francisco, M., Bruinhorst, A.V.D., Kroon, M.C., 2013. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angewandte Chemie International Edition 52, 3074-3085.
    連結:
  30. Fu, K., Rongwong W., Liang, Z., Na, Y., Idem, R., Tontiwachwuthikul, P., 2015. Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA–MeOH in an absorber. Chemical Engineering Journal 260, 11-19.
    連結:
  31. García G., Aparicio S., Ullah R., Atilhan M., 2015. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy Fuels 29, 2616-2644.
    連結:
  32. Gorke, J.T., Srienc, F., Kazlauskas, R.J., 2008. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chemical Communications 10, 1235-1237.
    連結:
  33. Gorke, J.T. , Srienc, F., Kazlauskas, R.J., 2010. Deep Eutectic Solvents for Candida antarctica Lipase B-Catalyzed Reactions. American Chemical Society 1038, 169-180.
    連結:
  34. Guo, F., Zheng C., Guo K., Feng Y., Gardner N.C., 1997. Hydrodynamics and mass transfer in crossflow rotating packed bed. Chemical Engineering Science 52, 3853-3859.
    連結:
  35. Guo, K., Guo, F., Feng, Y., Chen, J., Zheng, C., Gardner, N.C., 2000. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor. Chemical Engineering Science 55, 1699-1706.
    連結:
  36. IPCC, 2005. Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage. Cambridge University press, Cambridge, UK.
    連結:
  37. James, E.M., 2005. Physical Properties of Polymers Handbook. 2nd.
    連結:
  38. Jassim, M.S., Rochelle, G., Eimer, D., Ramshaw, C., 2007. Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed. Industrial Engineering Chemistry Research 46, 2823-2833.
    連結:
  39. Joel, A.S., Wang, M., Ramshaw, C., 2015. Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations. Applied Thermal Engineering 74, 47-53.
    連結:
  40. Joel, A.S., Wang, M., Ramshaw, C., Oko, E., 2017. Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology. Applied Energy 203, 11–25.
    連結:
  41. Kang, J.L., Sun, K., David Wong, S.H., Jang, S.S., Tan, C.S., 2014. Modeling studies on absorption of CO2 by monoethanolaminein rotating packed bed. International Journal of Greenhouse Gas Control 25, 141–150.
    連結:
  42. Kim, I., Hoff, K.A., Mejdell, T., 2014. Heat of absorption of CO2 with aqueous solutions of MEA: new experimental data. Energy Procedia 63, 1446 – 1455.
    連結:
  43. Knudsen, J.N., Jensen, J.N., Vilhelmsen, P.J., Biede, O., 2009. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia 1, 783-790.
    連結:
  44. Kothandaraman, A., Nord, L., Bolland, O., Herzog, H.J., McRae, G.J., 2009. Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1, 1373-1380.
    連結:
  45. Kumar, M.P., Rao, D.P., 1990. Studies on a High-Gravity Gas-Liquid Contactor. Industrial Engineering Chemistry Research 29, 917-920.
    連結:
  46. Li, C., Li, D., Zou, S., Li, Z., Yin, J. Wang, A., Cui, Y. Yao, Z., Zhao, Q., 2013. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chemistry 15, 2793-2799.
    連結:
  47. Li, K., Cousins, A., Yu, H., Feron, P., Tade, M., Luo, W., Chen, J., 2016. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement. Energy Science and Engineering 4, 23-39.
    連結:
  48. Li, X., Hou, M., Han, B., Wang, X., Zou, L., 2008. Solubility of CO2 in a Choline Chloride + Urea Eutectic Mixture. American Chemical Society 53, 548-550.
    連結:
  49. Lin, C.C., Chao C.Y., Liu, M.Y., Lee, Y.L., 2009. Feasibility of ozone absorption by H2O2 solution in rotating packed beds. Journal of Hazardous Materials 167, 1014-1020.
    連結:
  50. Lin, C.C., Chen, B.C., Chen, Y.S., Hsu, S.K., 2008. Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams. Separation and Purification Technology 62, 507-512.
    連結:
  51. Lin, C.C., Chu, C.R., 2015. Mass transfer performance of rotating packed beds with blade packings in carbon dioxide absorption into sodium hydroxide solution. Separation and Purification Technology 150, 196-203.
    連結:
  52. Lin, C.C., Jian, G.S., 2007. Characteristics of a rotating packed bed equipped with blade packings. Separation and Purification Technology 54, 51-60.
    連結:
  53. Lin, C.C., Liu, W.T., Tan, C.S., 2003. Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 42, 2381-2386.
    連結:
  54. Lin, C.C., Wei, T.Y., Hsu, S.K., Liu W.T., 2006. Performance of a pilot-scale cross-flow rotating packed bed in removing VOCs from waste gas streams. Separation and Purification Technology 52, 274-279.
    連結:
  55. Lin, C.C., Wu, M.S., 2016. Continuous production of CuO nanoparticles in a rotating packed bed. Ceramics International 42, 2133-2139.
    連結:
  56. Lin, C.M., Leron, R.B., Caparanga, A.R., Li, M.H., 2014. Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems. Journal of Chemical Thermodynamics 68, 216-220.
    連結:
  57. Liu, H.S., Lin, C.C., Wu, S.C., Hsu, H.W., 1996. Characteristics of a Rotating Packed Bed. Industrial & Engineering Chemistry Research 35, 3590-3596.
    連結:
  58. Lin, P.H., Wong, S.H., 2014. Carbon dioxide capture and regeneration with amine/alcohol/water blends. International Journal of Greenhouse Gas Control 26, 69-75.
    連結:
  59. Ma, H.J., Chen, Y.S., 2016. Evaluation of effectiveness of highly concentrated alkanolaminesolutions for capturing CO2 in a rotating packed bed. International Journal of Greenhouse Gas Control 55, 55-59.
    連結:
  60. Mangalapally, H.P., Hasse H., 2011. Pilot plant study of post-combustion carbon dioxide capture by reactive absorption: Methodology, comparison of different structured packings, and comprehensive results for monoethanolamine. Chemical Engineering Research and Design 89, 1216–1228.
    連結:
  61. Mondal, A., Pramanik, A., Bhowal, A., Datta, S., 2012. Distillation studies in rotating packed bed with split packing. chemical engineering research and design 90, 453-457.
    連結:
  62. Mudhasakul, S., Ku, H.M., Douglas, P.L., 2013. A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. International Journal of Greenhouse Gas Control 15, 134–141.
    連結:
  63. Nakagakia, T., Yamabe, R., Furukawa, Y., Sato, H., Yamanaka, Y., 2017. Experimental evaluation of temperature and concentration effects on heat of dissociation of CO2-loaded MEA solution in strippers. Energy Procedia.
    連結:
  64. Olajire, A.A., 2010. CO2 capture and separation technologies for end-of-pipe applications-A review. Energy 35, 2610-2628.
    連結:
  65. Onda, K., Takeuchi, H., Okumoto, Y., 1968. Mass transfer coefficients between gas and liquid phases in packed columns. Journal of Chemical Engineering Science 29, 501-507.
    連結:
  66. Pan, S.Y., Chiang, P.C., Chen, Y.H., Tan, C.S., Chang, E.E., 2013. Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed. Environmental Science Technology 47, 3308-3315.
    連結:
  67. Pandya, J.D., 1983. Adiabatic gas absorption and stripping with chemical reaction in packed towers. Chemical Engineering Communications 19, 343–361.
    連結:
  68. Pask, S.D., Cai, Z., Mack, H., Marc, L., Nuyken, O., 2013. The Spinning Disk Reactor for Polymers and Nanoparticles. Macromolecular Reaction Engineering 7, 98-106.
    連結:
  69. Pawar, P.M., Jarag, K.J., Shankarling, G.S., 2011. Environmentally benign and energy efficient methodology for condensation: an interesting facet to the classical Perkin reaction. Green Chemistry 13, 2130-2134.
    連結:
  70. Phadtare, S.B. , Shankarling, G.S., 2010. Halogenation reactions in biodegradable solvent: efficient bromination of substituted 1-aminoanthra-9,0-quinone in deep eutectic solvent (choline chloride : urea). Green Chemistry 12, 458-462.
    連結:
  71. Rabensteiner, M., Kinger, G., Koller, M., Gronald, G., Hochenauer, C., 2015. Investigation of carbon dioxide capture with aqueous piperazine on a post combustion pilot plant-Part I: Energetic review of the process. International Journal of Greenhouse Gas Control 39, 79-90.
    連結:
  72. Rabensteiner, M., Kinger, G., Koller, M., Hochenauer, C., 2016. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture. International Journal of Greenhouse Gas Control 51, 106-117.
    連結:
  73. Rao, A.B., Burr, E.S., 2002. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science Technology 36, 4467–4475.
    連結:
  74. Reay, D., 2008. The role of process intensification in cutting greenhouse gas emissions. Applied Thermal Engineering, 28, 2011-2019.
    連結:
  75. Rubin, E.S., 2008. CO2 capture and transport. Elements 4, 311-317.
    連結:
  76. Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J., 2012. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science 38, 630-671.
    連結:
  77. Shamiri, A., Shafeeyan, M.S., Tee, H.C., Leo, C.Y., Aroua, M.K., Aghamohammadi, N., 2016. Absorption of CO2 into aqueous mixtures of glycerol and monoethanolamine. Journal of Natural Gas Science and Engineering 35, 605-613.
    連結:
  78. Smith, E.L., Abbott, A.P., Ryder, K.S., 2014. Deep Eutectic Solvent (DESs) and Their Applications. American Chemical Society 114, 11060-11082.
    連結:
  79. Sung, W.D., Chen, Y.S., 2012. Characteristics of a rotating packed bed equipped with blade packings and baffles. Separation and Purification Technology 93, 52-58.
    連結:
  80. Tan, C.S., Chen, J.E., 2006. Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and Purification Technology 49, 174-180.
    連結:
  81. Tan, C.S., Lee, P.L., 2008. Supercritical CO2 desorption of toluene from activated carbon in rotating packed bed. Journal of Supercritical Fluids 46, 99-104.
    連結:
  82. Taubert, J., Keswani, M., Raghavan, S., 2013. Post-etch residue removal using choline chloride–malonic acid deep eutectic solvent (DES). Microelectronic Engineering, 102, 81-86.
    連結:
  83. Taubert, J., Raghavan, S., 2014. Effect of composition of post etch residues (PER) on their removal in choline chloride–malonic acid deep eutectic solvent (DES) system. Microelectronic Engineering 114, 141–147.
    連結:
  84. Thiels, M., David Wong S.H. , Yu, C.H. , Kang, J.L. , Jang, S.S., Tan, C.S., 2016. Modelling and Design of Carbon Dioxide Absorption in Rotating Packed Bed and Packed Column. IFAC-PapersOnLine 49, 895–900.
    連結:
  85. Tobiesen, F.A., Juliussen O., Svendsen H.F., 2008. Experimental validation of a rigorous desorber model for CO2 post-combustion capture Chemical Engineering Science 63, 2641-2656.
    連結:
  86. Tobiesen, F.A., Svendsen, H.F., Juliussen, O., 2007. Experimental validation of a rigorous absorber model for CO¬2 post-combustion capture. American Institute of Chemical Engineers 53, 846-865.
    連結:
  87. Tung, H.H., Mah, R.S.H., 1985. Modeling liquid mass transfer in higee separation process. Chemical Engineering Communication 39, 147-153.
    連結:
  88. Wang, T., He, H., Yu W,, Sharif Z., Fang, M., 2017. Process Simulations of CO2 Desorption in the Interaction between the Novel Direct Steam Stripping Process and Solvents. Energy Fuels 31, 4255−4262.
    連結:
  89. Xie, Y., Dong, H., Zhang, S., Lu, X., Ji, X., 2014. Effect of Water on the Density, Viscosity, and CO2 Solubility in Choline Chloride/Urea,” Journal of Chemical Engeering Data 59, 3344-3352.
    連結:
  90. Yang, Y.C., Xiang, Y., Chu, G.W., Zou, H.K., Luo, Y., Arowo, M., Chen, J.F., 2015. A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed. Chemical Engineering Science 138, 244-255.
    連結:
  91. Yu, C.H., Cheng, H.H., Tan, C.S., 2012. CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. International Journal of Greenhouse Gas Control 9, 136–147.
    連結:
  92. Yu, C.H., Wu, T.W., Tan, C.S., 2013. CO2 capture by piperazine mixed with non-aqueous solvent diethylene glycol in a rotating packed bed. International Journal of Greenhouse Gas Control 19, 503–509.
    連結:
  93. Yu, C.H., Tan, C.S., 2014. CO2 Capture by Aqueous Solution Containing Mixed Alkanolamines and Diethylene Glycol in a Rotating Packed Bed. Energy Procedia 63, 758-764.
    連結:
  94. Zhang, F., Fang, C.G., Wu, Y.T., Wang, Y.T., Li, A.M., Zhang, Z.B., 2010. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chemical Engineering Journal 160, 691-697.
    連結:
  95. Zhang, Y., Chen, C.C., 2013. Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with Aspen rate-based model. Energy Procedia 37, 1584-1596.
    連結:
  96. Zhang, Y.Y., Ji, X.Y., Lu, X.H., 2014. Application of Choline-based Deep eutectic solvents in CO2 capture and separation. Huagong Xuebao/Journal of Chemical Industry and Engineering 65, 1721-1728.
    連結:
  97. 我國燃料燃燒二氧化碳排放統計,2015
    連結:
  98. 王逸民,2016,旋轉填充床中以醇胺吸收劑捕獲二氧化碳之研究,中原大學碩士學位論文。
    連結:
  99. 吳逸甯,2016,超重力系統中以深共熔溶劑混合醇胺吸收二氧化碳,中原大學碩士學位論文。
    連結:
  100. Abbott, A.P., Collins, J., Dalrymple, I., Harris, R.C., Mistry, R., Qiu, F., Scheirer. J., Wise, W.R., 2009. Processing of Electric Arc Furnace Dust using Deep Eutectic Solvents. Australian Journal of Chemistry 62, 341-347.
  101. Abu-Zahra, M.R.M, Schneiders, L.H.J., Niederer, J.P.M., Ferom, P.H.M., Versteeg, G.F., 2007. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse Gas Control 1, 37-46.
  102. Chapel, D., Ernst, J., Mariz, C., 1999. Recovery of CO2 from flue gases: commercial trends. Canadian Society of Chemical Engineers annual meeting October 4-6.
  103. Freeman, S.A., Dugas, R., Wagener, D.H.V., Nguyen, T., Rochelle, G.T., 2010. Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control 4, 119-124.
  104. Gao, J., Yin, J., Zhu, F.F., Chen, X., Tong, M., Kang W.Z., Zhou Y.B., Lu, J., 2016. Study on Absorption and Regeneration Performance of Novel Hybrid Solutions for CO2 Capture,” China Petroleum Processing and Petrochemical Technology 18, 66-72.
  105. IEA, “Improvement in power generation with post-combustion capture of CO2,” Greenhouse Gas R&D Programme, Report No. PH4/33, 2004.
  106. Kohl, A.O. and R.B. Nielsen, 1997: Gas purification, Gulf Publishing Company, Houston, TX, USA.
  107. Lu, J.G., Hua, A.C., Bao, L.L., Liu, S.X., Zhang, H., Xu, Z.W., 2011. Performance evaluation on complex absorbents for CO2 capture. Separation and Purification Technology 82, 87-92.
  108. Luo, Y., Chu, G.W., Zou, H.K., Zhao, Z.Q., Dudukovic, M.P., Chen, J.F., 2012. Gas−Liquid Effective Interfacial Area in a Rotating Packed Bed. Industrial Engineering Chemistry Research 51, 16320-16325.
  109. Singh, S.P. , Wilson, J.H., Counce, R.M., Lucero, A.J., Reed, G.D., Ashworth, R.A. , Elliott, M.G., 1992. Removal of Volatile Organic Compounds from Groundwater Using a Rotary Air Stripper. Industrial Engineering Chemistry Research 31, 574-580.
  110. Wu S., Bergins C., Kikkawa H., Kobayashi H., Kawasaki T., 2010. Technology options for clean coal power generation with CO2 capture. World energy congress 12-16.
  111. 能源產業技術白皮書,2012
  112. 中華民國國家溫室氣體清冊報告,2015