题名

具多重結構之仿生聚苯胺在超級電容之應用

并列篇名

Bio-inspired polyaniline with multi-structure for supercapacitor application

DOI

10.6840/cycu201600852

作者

林振為

关键词

多層次結構;聚苯胺;超級電容 ; hierarchy structure ; polyaniline ; supercapacitor

期刊名称

中原大學機械工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

李有璋

内容语文

繁體中文

中文摘要

本論文是以人工方式製作出具有微米結構及微/奈米多層次結構矽基板,其製程手法由微影製程與乾式蝕刻製作。藉由光學微影快速定義圖案做為乾蝕刻擋層,再結構乾蝕刻製作微米圓柱結構,完成微米圓柱結構。然後定義奈米結構的擋層,再次以乾蝕刻於微米圓柱結構上,達到多層次結構的效果。接著透過模板轉印將所製做出的矽模具複製其結構得到相反結構的PDMS模具,最後將化學氧化聚合而成的聚苯胺溶液滴於PDMS模具上,烘烤後得到具有微米結構及微/奈米多層次結構的聚苯胺薄膜,將其應用在超級電容上。結構檢測方面,利用場放射電子顯微鏡(SEM)對薄膜鑑定,確認所做的微/奈米結構成功複製於聚苯胺薄膜上。電化學檢測則是將聚苯胺薄膜放置電極上,使用電化學檢測儀(Galvanostatic)進行檢測,最後結果證實了聚苯胺薄膜電極的表面積增加,明顯得提升了比電容值。在1 A/g的電流密度下,無結構的比電容值和具有微/奈米結構的比電容值分別是270 F/g與530 F/g,電容值上升幅度約為96%。

英文摘要

This paper proposes a method for the creation of molds with hierarchical micro/nano structures to enable the imprinting of conductive polymer polyaniline (PANI) for use as an electrode. The mold used for micro/nano structures was produced artificially. Photolithography was used to define an array of circular structures on a silicon substrate, followed by dry etching to create an array of cylinders with a diameter and height of 5 μm. Then nano pattern was produced and performed by dry etching to create a hierarchical structure. PDMS was used to form a soft mold to transfer this hierarchical structure to a PANI film, apply in the supercapacitor.   Using field emission scanning electron microscope (FE-SEM) confirmed that the surface structure of the film identification. On a three-electrode electrochemical cell, experiments were performed to characterize the electrochemical properties of plane PANI and PANI with microstructure and hierarchical microstructure, respectively. Cyclic voltammetric (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements were then conducted using 1M H2SO4 as an electrolytic solution.   Its specific capacity value was obtained by the electrochemical measurement. Experiment results demonstrate that its specific capacity was 530 F/g, which is higher approximately 96% compared with PANI plane film , . Our results show that increasing the surface area of PANI through the inclusion of hierarchical structures enhanced oxidation/reduction reactions, leading to a higher average specific capacitance.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [1] A. Burke, 2000, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, Vol. 91, pp. 37-50.
    連結:
  2. [2] R. Kötz, and M. Carlen, 2000, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, Vol. 45, pp. 2483-2498.
    連結:
  3. [3] G. Wang, L. Zhang, and J, Zhang, 2012, “A review of electrode materials for electrochemical supercapacitors”, Chem. Soc. Rev, Vol. 41, pp. 797-828.
    連結:
  4. [4] B. E. Conway, V. Birss, and J. Wojtowicz, 1997, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources, Vol. 66, pp. 1-14.
    連結:
  5. [5] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, 2009, “Progress of electrochemical capacitor electrode materials: A review”,Int. J. Hydrogen Energy, Vol. 34, pp.4889-4899.
    連結:
  6. [7] 劉俊興,2006,“氧化錳矽超電容之研究”,大同大學碩士論文。
    連結:
  7. [8] Q. Y. Li, Z. S. Li, L. Lin, X.Y. Wang, Y. F. Wang, C. H. Zhang, and H. Q. Wang, “Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application”, Chem. Eng. J., Vol. 156, pp. 500-504.
    連結:
  8. [9] J. P. Zheng, P. J. Cygan, and T. R. Jow, 1995, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors”, J. Electrochem. Soc., Vol. 142.
    連結:
  9. [10]Y. Wei, K. F. Hsueh, and G. W. Jang, 1994, “A Study of Leucoemeraldine and the Effect of Redox Reactions on the Molecular Weight of Chemically Prepared Polyaniline”, Macromolecules, Vol. 27, pp.518-525.
    連結:
  10. [11]S. Ramakrishnan, 1997, “Conducting Polymers”, Resonance, Vol. 2, pp. 48-58.
    連結:
  11. [12]G. A. Snook, P. Kao, A. S. Best, 2011, “Conducting-polymer-based supercapacitor devices and electrodes”, J. Power Sources, Vol. 196, pp.1-12.
    連結:
  12. [13]S. R. Sivakkumar, R. Saraswathi, 2004, “Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-storage devices”, J. Power Sources, Vol. 137, pp.322-328.
    連結:
  13. [14]R. Ramya, R. Sivasubramanian, M. V. Sangaranarayanan, 2013, “Conducting polymers-based electrochemical supercapacitors—Progress and prospects”, Electrochim. Acta, Vol. 101, pp.109-129.
    連結:
  14. [15]S. G. Scholz, C. A. Griffiths, S. S. Dimov, E. B. Brousseau, G. Lalev and P. Petkov, 2011, “Manufacturing routes for replicating micro and nano surface structures with bio-mimetic applications”, CIRP J. Manuf. Sci. Technol., Vol. 4, pp. 347-356.
    連結:
  15. [16]T. Nakanishi, T. Hiraoka, A. Fujimoto, T. Okino, S. Sugimura, T. Shimada and K. Asakawa, 2010, “Large Area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting”, Jpn. J. Appl. Phy., Vol. 49, pp. 0750011-0750017.
    連結:
  16. [21]H. W. Park, T. Kim, J. Huh, M. Kang, J. E. Lee, and H. Yoon, 2012, “Anisotropic growth control of polyaniline nanostructures and their morphology dependent electrochemical characteristics”, Am. Chem. Soc., Vol. 6, pp. 7624-7633.
    連結:
  17. [22]簡潮明,2013,“仿生三維結構之聚苯胺/奈米碳管複合薄膜合成、鑑定以及在超級電容上的應用”,中原大學碩士論文。
    連結:
  18. [23]鄭宇盛,2014,“微奈米複合仿生壁虎結構至做極其表面特性分析”,中原大學碩士論文。
    連結:
  19. [24]C. M. Chang, Z. H. Hu, T. Y. Lee, Y. A. Huang, W. F. Ji, We. R. Liu, J. M. Yeh, and Y. Wei, 2016, “Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors”, J. Mater. Chem. A, Vol. 4, pp. 9133-9145.
    連結:
  20. [25]吳旭剛,2013,“聚苯乙烯微奈米球之製備、自組裝及其應用”,中原大學碩士論文。
    連結:
  21. [26]李子正,2009,“生物高感度偵測技術快速鑑別人類紅血素結合蛋白之表面型”,交通大學碩士論文。
    連結:
  22. [6] http://nanomaterials.che.nthu.edu.tw/Researchfields03.html
  23. [17]沈瑞文、張國明、朱祖德,2008,“獨步江湖的壁虎功”,科學發展,423期。
  24. [18]http://news.sciencenet.cn/htmlnews/2011/4/246464.shtm
  25. [19]http://tech.sina.com.cn/d/2008-12-15/00242651972.shtml
  26. [20]http://www.x-mol.com/news/1365
  27. [27]A. J. Bard, and L. R. Faulkner, 2000, “Electrochemical Methods: Fundamentals and Applications, 2nd Edition”, John Wiley.