题名 |
仿生三維結構之聚苯胺/奈米碳管複合薄膜合成、鑑定以及在超級電容上的應用 |
并列篇名 |
Synthesis, Charaterization and Supercapacitor Application of Biomimetic 3D-nanopatterning Polyaniline/Carbon Nanotube Composites |
DOI |
10.6840/cycu201300583 |
作者 |
簡潮明 |
关键词 |
聚苯胺 ; 超級電容 ; 仿生模板 ; Polyaniline ; Supercapacitor ; Biomimetic |
期刊名称 |
中原大學化學系學位論文 |
卷期/出版年月 |
2013年 |
学位类别 |
碩士 |
导师 |
葉瑞銘 |
内容语文 |
繁體中文 |
中文摘要 |
中文摘要 本論文主要分為兩部分,第一個部分是利用模板轉印法來複製植物千年芋葉片之表面結構製備仿生聚二甲基矽氧烷(PDMS)負模板,並將化學氧化聚合之聚苯胺聚溶液塗佈於PDMS模板上,再以壓印的方式將其表面結構複製至白金電極上,得到具仿生微結構聚苯胺薄膜修飾的電極。並藉由原子力顯微鏡(AFM)與掃描式電子顯微鏡 (SEM)對其鑑定,證實千年芋葉片的表面結構有成功複製至聚苯胺薄膜表面上,接著對具仿生微結構聚苯胺修飾電極利用電化學儀器(cyclic voltammetry, galvanostatic)進行測試,證實了複製仿生微結構後,使電極上的聚苯胺薄膜的表面積上升,進而明顯提升其電容量,其充放電電容量在1 A/g的能量密度下,可以從280 F/g上升至420 F/g其上升幅度約有50%,也證實了仿生微結構可以應用在超級電容器上。 由於從第一個部分研究中之的生命週期測試結果得知,純粹由聚苯胺組成的電極材料不論是否擁有仿生微結構,在進行1000次的充放電後它們的電容保存率都只僅剩下40%,故第二個部分的研究目的則是為了改善此問題,一般而言要改善此問題可以於電極材料中加入在如金屬、金屬氧化物(Metal Oxide)、石墨烯(Graphene)或奈米碳管(Carbon Nanotube)等,在此我們選擇將奈米碳管加入聚苯胺中,想要藉著此方法改善多次充放電後電容保存率下降的問題外,也希望能再次提升電極材料的電性使其更適合被用在超級電容上。第二部份實驗中先利用傅立葉轉換紅外線光譜分析(FT-IR)鑑定加入奈米碳管後材料光譜之改變,由於同樣是利用模板轉印法來複製植物葉片表面結構,故同樣利用AFM與SEM對其表面進行鑑定並觀察加入奈米碳管前後其表面型態有無改變,還有利用穿透式電子顯微鏡(TEM)觀察奈米碳管在聚苯胺薄膜裡分散的情況,最後同樣用電化學儀器對具仿生微結構聚苯胺/奈米碳管複合薄膜修飾之電極進行測試,證實加入奈米碳管後確實大幅提升電容保存率,並且使材料之電容量在因仿生微結構上升之後又再度提升。 |
英文摘要 |
Abstract Polyaniline (PANI) thin film electrode studied in electrochemical capacity cooperation of the morphology with biomimetic hierarchical structure was first demonstrated. Three dimensional surface construction onto the PANI electrode was replicating fresh plant leaves as a template through nanocasting technique. The multiscale papilla-like and texture structures of the Xanthosoma sagittifolium leaves were successfully copied on the electrode evidenced by the scanning electron microscope (SEM)/ atomic force microscopy (AFM) investigation. The resulting of electrochemical capacitance properties characterized by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy measurements. The multiscale structures PANI electrode showed a large specific capacitance of 420F/g at a current density of 1A/g higher than normal plane PANI electrode with capacitance of 280F/g revealing the great potential for energy storage application. After 1000 charge/discharge cycles, the retention of PANI-3D thin film fail decreased about 40%. To improve cyclic stability of PANI-3Dfilm, we usedmulti-wall carbon nanotube (MWNT) to prepare PANI/MWNT nanocomposite films.The surface morphology of PANI nanocomposite electrodes including multiscale papilla-like and nanoscale texture were also successfully replicated from the Xanthosoma sagittifolium leaves. The morphology, roughness and dispersed MWNT of PANI/MWNT nanocomposites were characterized using fourier transform infrared spectroscopy (FTIR),transmission electron microscopy (TEM), SEM and AFM.It was found that the well dispersed MWNT and the multiscale morphology foamed a uniform nanocomposite. Such uniform structure together with the observed more surface area and high specific capacitance and good cycling stability during the charge-discharge process. A specific capacitance of as high as 530 F/g at current density of 1A/g was achieved over a MWNT 5wt% loading coupled with high roughness PANI nanocomposite, and maintained the capacitance with the increment of scan rate density to 3A/g. These easily fabricated PANI nanocomposite electrode reveals a great potential for energy storage application. |
主题分类 |
基礎與應用科學 >
化學 理學院 > 化學系 |
被引用次数 |