题名

多功能性有機無機複合顆粒之製備與反應機制研究

并列篇名

Study of mutilfunctional organic-inorganic composite particles preparation and reaction mechanism

DOI

10.6840/cycu201600009

作者

吳俊逸

关键词

雙球顆粒 ; 自由基反應 ; 核殼顆粒 ; 表面拉曼增強散射 ; Dumbbell particles ; Free radical reaction ; Core-shell particle ; Surface-Enhanced Raman Scattering

期刊名称

中原大學化學工程學系學位論文

卷期/出版年月

2016年

学位类别

博士

导师

許克瀛

内容语文

繁體中文

中文摘要

本研究主要目的在於開發簡易的合成方法,製備出不同型態的多功能性有機/無機複合顆粒,並探討其反應機制和應用性。以最簡易化學合成步驟製備複合顆粒,主要為利用自由基化學反應法、非勻相團聚法、氧化還原法去合成有機/無機複合顆粒。並藉由改變複合顆粒的表面型態,研究多功能複合材料的電學與光學性質。在本論文中開發出四種簡易的方法,運用此四種方法得以分別製備出有機無機啞鈴型核殼二氧化矽/聚吡咯複合顆粒、覆盆子狀聚醯胺酸/氧化鋅複合顆粒、覆盆子狀聚醯胺酸/氧化鋅/奈米銀複合顆粒、啞鈴型核殼Fe2O3/SiO2複合顆粒。 首先以VTES為前驅物製備表面帶有乙烯基官能基的二氧化矽顆粒,藉由自由基化學反應法製備啞鈴型二氧化矽顆粒作為粒種,再以吡咯為單體利用氧化聚合方式使啞鈴型二氧化矽顆粒表面包覆一層聚吡咯高分子,形成有機/無機啞鈴型核殼二氧化矽/聚吡咯複合顆粒;第二種複合顆粒先以沉澱聚合法製備聚醯胺酸(poly(amic acid),PAA)顆粒作為粒種,在添加以sol-gel法製備出的氧化鋅奈米顆粒進行非勻相團聚反應,形成覆盆子狀聚醯胺酸/氧化鋅複合顆粒;第三種複合顆粒為上述的覆盆子狀聚醯胺酸/氧化鋅複合顆粒添加SnCl2做為氧化鋅表面改質劑,TEA為螯合劑、AgNO3為製備奈米銀前驅物,利用氧化還原法使奈米銀有效生成於氧化鋅顆粒表面,形成覆盆子狀聚醯胺酸/氧化鋅/奈米銀複合顆粒;第四種以FeCl2為製備三氧化二鐵的前驅物,添加TEOS進行sol-gel反應,三氧化二鐵表面將被二氧化矽包覆形成核殼Fe2O3/SiO2複合顆粒,再利用VTES將二氧化矽顆粒表面進行改質,可製備出表面帶有碳碳雙鍵核殼Fe2O3/SiO2複合顆粒,再以自由基化學反應法可形成啞鈴型核殼Fe2O3/SiO2複合顆粒。 這一系列所合成的有機/無機複合顆粒利用掃描式電子顯微鏡(SEM) 、穿透式電子顯微鏡(TEM)及廣角X-ray繞射 (XRD) 、紅外線光譜儀(IR)進行結構及性質分析,並使用四點探針、紫外光-可見光光譜儀 、拉曼光譜儀、磁力分析儀作為材料在光學和電學還有磁學性質方面分析,因此本研究提出以簡易方法製備有機/無機複合顆粒,並將提供新的製備方法與理論貢獻於多功能性材料領域。

英文摘要

The main goal of this study is to develop a simple synthetic method for preparing the versatility of the different shapes of organic / inorganic composite particles and to investigate the reaction mechanism and applied to the most simple chemical synthesis step of preparing the composite particles.Mainly, for the use of free radical chemical reaction method, heterogeneous agglomeration method, redox method , synthesize organic / inorganic composite particles. By changing the shape of the composite particles , study the electrical and optical properties of multifunctional composite materials. Four simple methods developed in this work, by use these four methods to prepare organic/ inorganic dumbbell-shaped core-shell silica / polypyrrole composite particles, raspberry-like polyamic acid / zinc oxide composite particles, raspberry like polyamic acid / zinc oxide / nano silver composite particles, dumbbell-shaped core-shell Fe2O3 / SiO2 composite particles. A dumbbell SiO2 seed particles are prepared by free radical chemical reaction method of hydrophobic silica particles possessing vinyl functional groups on the surfaces and VTES as precursor, then dumbbell shaped silica particles as seed and pyrrole as a monomer using an oxidation plymerization coated with a layer of polypyrrole polymer, forming an organic / inorganic dumbbell-shaped core-shell silica / polypyrrole composite particles; the second composite particles use polyamic acid (poly (amic acid), PAA) particles as host particle by precipitate Polymerization method, then combine nano-particles of zinc oxide by heterogeneous agglomeration method to form raspberry-like polyamic acid /zinc oxide composite particles; third composite particles by use above successfully prepared raspberry-like polyamic acid / zinc oxide composite particles added SnCl2 as zinc oxide surface modifier, TEA is a chelating agent, AgNO3 as precursor for the preparation of nano silver,forming a raspberry-like polyamic acid acid / zinc oxide / Nano silver composite particles; fourth prepare Fe2O3 particle with FeCl2 as precursors, were added TEOS sol-gel reaction , ferric oxide surface is formed a core-shell Fe2O3 / SiO2 composite particles, modified silica particle surfaces by VTES, the modified silica particle surfaces with a carbon-carbon double bond. then obtain dumbbell-shaped core-shell Fe2O3 / SiO2 composite particles by free radical chemical method . The organic / inorganic composite particles were characterized by means of X-ray diffraction (XRD), scanning electron microscopy(SEM),transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and ultravioletevisible (UV-Vis) absorption measurement, and use the four-point probe, Raman spectroscopy, magnetic analyzer as a material in the optical and electrical as well as magnetic properties analyzes, this study presented with a simple method of preparing organic / inorganic composite particles, and provide new methods of preparation and theoretical contribution to the field of material versatility.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. [1]. M. Agrawal, S. Gupta, M. Stamm, Recent developments in fabrication and applicationsof colloid based composite particles, J. Mater. Chem. 21 (2011) 615-627.
    連結:
  2. [2]. W.Niea, P. Chen, Appl Surf Sci. 329 (2015) 158–164.
    連結:
  3. [6]. A. Perro, S. Reculusa, E. Bourgeat-Lami, E. Duguet, S. Ravaine, Colloids Surf. A: Physicochem. Eng. Aspects 284–285 (2006) 78-83.
    連結:
  4. [11]. X.M. Liu, J.H. He, J. Colloid Interface Sci.314 (2007) 341.
    連結:
  5. [18]. Y. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Angew Chem. Int. Ed. 48 (2009) 60.
    連結:
  6. [19]. K.M. Mayer, J.H. Hafner, Chem. Rev. 111 (2011) 3828.
    連結:
  7. [20]. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1968) 62.
    連結:
  8. [22]. A.S.P,V.B,J Colloid Interf Sci .118(1987)410-416.
    連結:
  9. [65]. Y.He, B. Xiong, J. Cheng, J. Chromatogr. A .1218 (2011) 3823–3829.
    連結:
  10. [66]. Q. Li, D. Sun, Sep. Purif. Technol. 106 (2013) 117–122.
    連結:
  11. [68]. D.W. Hatchett, M. Josowicz, Chem. Rev. 108(2008)746
    連結:
  12. [70]. M.Wei, Y. Lu, Synth. Met. 159 (2009) 1061-1066
    連結:
  13. [71]. S. Biswas, L.T. Drzal, Chem. Mater. 22(2010) 5667
    連結:
  14. [72]. J. Upadhyay, A. Kumar , Materials Science and Engineering B. 178 (2013) 982- 989
    連結:
  15. [76]. Hongli Liu, Dan Wang, Xinlin Yang, Colloids and Surfaces A: Physicochem. Eng. Aspects .397 (2012) 48- 58
    連結:
  16. [77]. Zhenguo An , Jingjie Zhang, Shunlong Pan, Guangzhi Song, Powder Technol. 217 (2012) 274-280.
    連結:
  17. [78]. Chien WC, Yu YY, Chen PK,Thin Solid Films .519(2011)5274-9.
    連結:
  18. [84]. W.Y.Nie, Appl. Surf. Sci. 342(2015)92-100.
    連結:
  19. [88]. Y. G. Jeong , W. S. Lyoo , B.G.Min, J. Colloid Interface Sci. 344 (2010) 584–587.
    連結:
  20. [92]. M. Agrawal, S. Gupta, M. Stamm, Recent developments in fabrication and applicationsof colloid based composite particles, J. Mater. Chem. 21 (2011) 615-627.
    連結:
  21. [3]. Y.Yamamoto,S.Fujii,K.Shitajima,K.Fujiwara,S.Hikasa,Y.Nakamura ,Polymer.6(2015)6.
  22. [4]. T.J. Yao, C.X. Wang, J. Wu, Q. Lin, H. Lv, K. Zhang, K. Yu, B. Yang, J. Colloid Interface Sci. 338 (2009) 573-577.
  23. [5]. D. Nguyen, S. Ravaine, E. Bourgeat-Lami, E. Duguet, J. Mater. Chem. 20 (2010) 9392-9400.
  24. [7]. M. D’Acunzi, L. Mammen, M. Singh, X. Deng, M. Roth, G.K. Auernhammer, H-J.Butt, D. Vollmer, Faraday Discuss. 146 (2010) 35-48.
  25. [8]. Z. Qian, Z.C. Zhang, L.Y. Song, H.R. Liu, J. Mater. Chem. 19 (2009) 1297-1304.
  26. [9]. T.J. Yao, C.X. Wang, Q. Lin, X. Li, X.L. Chen, J. Wu, J.H. Zhang, K. Yu, B. Yang, Nanotechnology .20 (2009) 65-304.
  27. [10]. X. Du, X.M. Liu, H.M. Chen, J.H. He, J. Phys. Chem. C. 113 (2009) 9063-9070.
  28. [12]. S.J. Guo, S.J. Dong, E. Wang, J. Phys. Chem. C .113 (2009)5485-5492.
  29. [13]. X. Wang, T. Akagi, M. Akashi, M. Baba, Mini-Rev, Org. Chem. 4 (2007)51-59.
  30. [14]. T. Akagi, M. Baba, M. Akashi, Polymer .48 (2007) 6729-6747.
  31. [15]. Grzelczak.M,P.Juste, J. Mulvaney, P.Liz-Marzan, L. M, Chem. Soc. Rev. 37(2008)1783-1791.
  32. [16]. Xia.Y. N, Xiong.Y. J,Lim.B,Skrabalak.S. E,Chem.Int. Ed.48(2009)60-103.
  33. [17]. Chen.G,Sun.H.Xu,J.Feng.Y,Zhang.Z,Wu.T,Chen,Small .7(2011)2721–2726.
  34. [21]. Y.Yamada, T.Sakamoto, S.Gu, M.Konno, J. Colloid Interface Sci. 281 (2005) 249–252.
  35. [23]. T.Masuda,M.Okubo,Preprints of the First Asian Sym-posium on Emulsion Polymerization and Functional Polymeric Microsphere,Hang Zhou,(1999)62-63.
  36. [24]. Z. Qi , P. G. Pickup, Chem. Mater.9(1997)2934-2939.
  37. [25]. J.S.Song,L.Chagal,andM.A.Winnik,Macromolecules.39 (2006) 5729-5737.
  38. [26]. J.S.Song,L.Chagal,andM.A. Winnik,Macromolecules.39(2006) 5729-5737.
  39. [27]. Z. Meng, C.Y Xue, Q.H. Zhang, X.H. Yu, K. Xi, and X.D. Jia , Langmuir .25(2009)7879-7883.
  40. [28]. T.S. Deng and F. Marlow ,Chem. Mater.24( 2012)536−542.
  41. [62]. G. Chen, Y. Wang, L.H. Tan, M.X. Yang, L.S. Tan, Y. Chen, and H.Y. Chen ,J. Am. Chem. Soc. 131(2009)4218–4219
  42. [63]. X.M. Sun, D.C. Luo, J.F. Liu, and D.G. Evans ,4 (2010) 3381-3389
  43. [64]. T.P. Tyler, A.I. Henry, R.P. V. Duyne, and M.C. Hersam ,J. Phys. Chem. Lett.2( 2011)218-222
  44. [67]. X. Zhang, J.Zhang, W.Song, and Z.Liu, J. Phys. Chem. B.110( 2006) 1158-1165
  45. [69]. Q.Chenga, Y.Hea, V.Pavlinekb, C. Li , P.Sahab, Synth. Met .158 (2008) 953-957
  46. [73]. J.Hazarika,A.Kumar, Synth. Met.175 (2013) 155–162.
  47. [74]. Lijuan Sun , Jiang He , Songsong An , Junwei Zhang , Dong Ren, J. Mol. Struct. 1046 (2013) 74-81.
  48. [75]. Li-Yun Yang, Shu-Ying Dong, Jian-Hui Sun, Sheng-Peng Sun, J. Hazard. Mater. 179 (2010) 438-443.
  49. [79]. S.Kango, S.Kalia, A.Celli , J.Njugunad,Y.Habibie, R.Kumara, Prog. Polym. Sci. 38 (2013) 1232- 1261.
  50. [80]. Sardon H, Irusta L, Fernández-Berridi MJ, Lansalot M, Bourgeat-Lami E,Polymer .51(2010)5051-7.
  51. [81]. H.Wang,L.Chen,Y.Feng,andH.Chen,AccountsChem.Res. .46(2013)1636–1646
  52. [82]. Q.Wei, Z.Xiang, J.He, G.Wang, H.Li, Z.Qian, M.Yang, Biosensors and Bioelectronics.26 (2010) 627-631.
  53. [83]. L.Sun , J.He , S. An , J.Zhang , D. Ren, J. Mol. Struct. 1046 (2013) 74-81.
  54. [85]. Z.Chaoa, L.Wanga, L.Songa, Z.Wangyan N.Pengpeng Chen, Appl. Surf. Sci.329 (2015) 158-164
  55. [86]. B. N. Khlebtsov,, Z. Liu, J. Ye, J. Qua Spe & Rad Trans. 167 (2015) 64–75.
  56. [87]. K. Leeb, K. H. Ahnc, B. Kim, J. Ind. Eng. Chem. 14(2008)515–9
  57. [89]. Fei Li , J. Wu, Q. Qin , Z. Li , X. Huang, Superlattices Microstruct. 47 (2010) 232-240.
  58. [90]. J.R.Lakowicz,J.Zhang,Y.Fu,M.H.Chowdhury,Nano Lett.7(2007)2101-2107.
  59. [91]. B. Bai, N.Quici, Z. L, Chem. Eng. J .170 (2011) 451–456.
  60. [93]. C.G.Kim,M.Abbas,M.N.Islam, J. Ind. Eng. Chem. 31 (2015) 43–46.