题名

以紫外光調製耐用型金量子簇並用於生物標記研究

并列篇名

UV-Tunable and Durable Gold Quantum Clusters for Biological Labeling

DOI

10.6840/cycu201500908

作者

林佳慧

关键词

金量子簇 ; 光還原反應 ; 光譜調控 ; 磷脂質 ; Gold quantum clusters ; Tunable fluorescent wavelength ; Photoreduction

期刊名称

中原大學生物醫學工程學系學位論文

卷期/出版年月

2015年

学位类别

碩士

导师

林政鞍

内容语文

繁體中文

中文摘要

近年來在奈米科技領域中,螢光奈米探針廣泛應用於生醫領域上,傳統以有機螢光染劑、量子點及螢光金屬奈米團簇為主,在生物標定與造影成像極為重要。其中量子點具有螢光波長可調、高量子產率、低光漂白,但仍在毒性上有使用限制;而貴金屬團簇具有物理尺寸小、螢光可調及生物相容性,但需添加表面配體分子進行保護。本研究結合了量子點螢光波長可調、低光漂白以及貴金屬團簇物理尺寸小、生物相容性之優點,提出金量子簇,利用一簡易的方法製備螢光金量子簇,並首次提出以光還原反應來調控螢光光譜,深入探討光還原對於金量子簇的光學特性及結構等分析。其次,利用界面活性劑增強藍色金量子簇光學特性並藉由光還原來調控螢光特性。最後,使用磷脂質將有機相金量子簇成功改質至水相,並且保有其原本的螢光特性,可以使這種合成方法簡單的有機相金量子簇未來可以廣泛應用於廣泛應用在生醫標定、細胞追蹤、分子檢測等領域。

英文摘要

Fluorescent probes, like Organic fluorescent dyes, fluorescent quantum dots and metal nanoclusters are widely used in nanotechnology biomedical field in recent years, mostly in contrast imaging and tracking. Quantum dots advantages are the fluorescent wavelength is accustomed, high quantum yield and low photobleaching effect, but there are restrictions of toxicity. On the other side, metal nanoclusters have small size, tunable fluorescent wavelength and biocompatibility, but require addition of surface ligand as the protection. In this study, gold quantum clusters combining the advantages of quantum dots which is with tunable fluorescence wavelength and low photobleaching and metal nanoclusters which is with small size and biocompatible is proposed. Utilizing a simple method to synthesize gold quantum clusters and proposing tunable fluorescence wavelength according to corresponding reaction of photon reduction deeply explore gold quantum clusters reacting to photon reduction and further analyze the optical properties and structure. Secondly, different surfactants can enhance and regulate optical properties of blue gold quantum clusters by photon reduction. Finally, the hydrophobic of gold quantum clusters can be transferred easily to hydrophilic phase through lipid micelle while retaining its original fluorescent properties. The experiment will be very useful for gold quantum clusters synthesis and their fluorescence control, moreover this method is environmental friendly, thus can be developed to improve our human health in the future.

主题分类 醫藥衛生 > 醫藥總論
工學院 > 生物醫學工程學系
参考文献
  1. 1. Baker, M., Nanotechnology imaging probes: smaller and more stable. Nat Methods 2010, 7 (12), 957-962.
    連結:
  2. 2. Wang, F.; Tan, W. B.; Zhang, Y.; Fan, X. P.; Wang, M. Q., Luminescent nanomaterials for biological labelling. Nanotechnology 2006, 17 (1), R1-R13.
    連結:
  3. 3. Paul, B. K.; Guchhait, N., Looking at the Green Fluorescent Protein (GFP) chromophore from a different perspective: A computational insight. Spectrochim Acta A 2013, 103, 295-303.
    連結:
  4. 4. Chen, F. Q.; Gerion, D., Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 2004, 4 (10), 1827-1832.
    連結:
  5. 6. Hardman, R., A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Persp 2006, 114 (2), 165-172.
    連結:
  6. 7. Zheng, J.; Zhang, C. W.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 2004, 93 (7).
    連結:
  7. 8. Shang, L.; Dong, S. J.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6 (4), 401-418.
    連結:
  8. 9. Lin, C. A. J.; Lee, C. H.; Hsieh, J. T.; Wang, H. H.; Li, J. K.; Shen, J. L.; Chan, W. H.; Yeh, H. I.; Chang, W. H., Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. J Med Biol Eng 2009, 29 (6), 276-283.
    連結:
  9. 10. Latorre, A.; Lorca, R.; Zamora, F.; Somoza, A., Enhanced fluorescence of silver nanoclusters stabilized with branched oligonucleotides. Chem Commun 2013, 49 (43), 4950-4952.
    連結:
  10. 11. Zheng, J.; Petty, J. T.; Dickson, R. M., High quantum yield blue emission from water-soluble Au-8 nanodots. J Am Chem Soc 2003, 125 (26), 7780-7781.
    連結:
  11. 12. Xu, H. X.; Suslick, K. S., Water-Soluble Fluorescent Silver Nanoclusters. Adv Mater 2010, 22 (10), 1078-1082.
    連結:
  12. 14. Soejima, T.; Tada, H.; Kawahara, T.; Ito, S., Formation of Au nanoclusters on TiO2 surfaces by a two-step method consisting of Au(III)-complex chemisorption and its photoreduction. Langmuir 2002, 18 (11), 4191-4194.
    連結:
  13. 15. Carlson, R. H., Nanoscale Assays Get High Mileage from Minute Specimens. Oncology-times 2010, 32 (21), 38.
    連結:
  14. 16. Baker, S. N.; Baker, G. A., Luminescent Carbon Nanodots: Emergent Nanolights. Angew Chem Int Edit 2010, 49 (38), 6726-6744.
    連結:
  15. 17. Cao, Y. C., Nanomaterials for biomedical applications. Nanomedicine-Uk 2008, 3 (4), 467-469.
    連結:
  16. 18. Han M, G. X., Su JZ, Nie S., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology 2001, 19 (7), 631-635.
    連結:
  17. 19. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M., Biological applications of quantum dots. Biomaterials 2007, 28 (31), 4717-4732.
    連結:
  18. 20. Papasani, M. R.; Wang, G. K.; Hill, R. A., Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed-Nanotechnol 2012, 8 (6), 804-814.
    連結:
  19. 21. Maysinger, D.; Lovric, J.; Eisenberg, A.; Savic, R., Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 2007, 65 (3), 270-281.
    連結:
  20. 22. A, M., Photoluminescence of Metals. Phys. Rev. Lett. 1969, 22 (3), 185-187.
    連結:
  21. 23. Palmal, S.; Basiruddin, S. K.; Maity, A. R.; Ray, S. C.; Jana, N. R., Thiol-Directed Synthesis of Highly Fluorescent Gold Clusters and Their Conversion into Stable Imaging Nanoprobes. Chem-Eur J 2013, 19 (3), 943-949.
    連結:
  22. 24. Zhang, Z. Y.; Xu, L. J.; Li, H. X.; Kong, J. L., Wavelength-tunable luminescent gold nanoparticles generated by cooperation ligand exchange and their potential application in cellular imaging. Rsc Adv 2013, 3 (1), 59-63.
    連結:
  23. 25. Boyd, G. T. Y., Z. H.; Shen, Y. R, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B 1986, 33 (12), 7923-7936.
    連結:
  24. 26. Wilcoxon, J. P. W., R. L., Optical properties of gold colloids formed in inverse micelles. The Journal of Chemical Physics 1993, 98 (12), 9933-9950.
    連結:
  25. 28. Raymond J Giguere, T. L. B., Scott M Duncan,George Majetich, Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters 1986, 27 (41), 4945–4948.
    連結:
  26. 29. Buehler, G.; Feldmann, C., Microwave-assisted synthesis of luminescent LaPO4 : Ce,Tb nanocrystals in ionic liquids. Angew Chem Int Edit 2006, 45 (29), 4864-4867.
    連結:
  27. 30. Yue, Y.; Liu, T. Y.; Li, H. W.; Liu, Z. Y.; Wu, Y. Q., Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 2012, 4 (7), 2251-2254.
    連結:
  28. 31. Yan, L.; Cai, Y. Q.; Zheng, B. Z.; Yuan, H. Y.; Guo, Y.; Xiao, D.; Choi, M. M. F., Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 2012, 22 (3), 1000-1005.
    連結:
  29. 32. Shang, L.; Yang, L. X.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4 (14), 4155-4160.
    連結:
  30. 33. Zhang, J.; Yuan, Y.; Liang, G. L.; Arshad, M. N.; Albar, H. A.; Sobahi, T. R.; Yu, S. H., A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. Chem Commun 2015, 51 (52), 10539-10542.
    連結:
  31. 34. Hongying Liu, X. Z., Ximei Wu, Liping Jiang, Clemens Burda , Jun-Jie Zhu, Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing. Chem. Commun. 2011, 47 (4237-4239).
    連結:
  32. 35. Xu, H. X.; Zeiger, B. W.; Suslick, K. S., Sonochemical synthesis of nanomaterials. Chem Soc Rev 2013, 42 (7), 2555-2567.
    連結:
  33. 36. Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. nature physical science 1973, 214, 20-22.
    連結:
  34. 38. Roucoux, A.; Schulz, J.; Patin, H., Reduced transition metal colloids: A novel family of reusable catalysts? Chem Rev 2002, 102 (10), 3757-3778.
    連結:
  35. 39. Jin R, C. Y., Mirkin CA, Kelly KL, Schatz GC, Zheng JG., Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 30 (294), 1901-1903.
    連結:
  36. 40. Grzelczak, M.; Liz-Marzan, L. M., The relevance of light in the formation of colloidal metal nanoparticles. Chem Soc Rev 2014, 43 (7), 2089-2097.
    連結:
  37. 41. Esumi, K. T. a. K., Preparation of Colloidal Gold by Photoreduction of AuCl4 Cationic Surfactant Complexes. Langmuir 1992, 8, 59-63.
    連結:
  38. 42. Zhang, H.; Huang, X.; Li, L.; Zhang, G. W.; Hussain, I.; Li, Z.; Tan, B., Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem Commun 2012, 48 (4), 567-569.
    連結:
  39. 43. Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R., Kinetically controlled, high-yield synthesis of Au-25 clusters. J Am Chem Soc 2008, 130 (4), 1138-+.
    連結:
  40. 44. Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P., Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. Acs Nano 2011, 5 (11), 8800-8808.
    連結:
  41. 45. Lin, C. A. J.; Sperling, R. A.; Li, J. K.; Yang, T. Y.; Li, P. Y.; Zanella, M.; Chang, W. H.; Parak, W. G. J., Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 2008, 4 (3), 334-341.
    連結:
  42. 47. Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. Acs Nano 2009, 3 (2), 395-401.
    連結:
  43. 48. Zrazhevskiy, P.; Sena, M.; Gao, X. H., Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 2010, 39 (11), 4326-4354.
    連結:
  44. 49. Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S., Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliver Rev 2013, 65 (5), 622-648.
    連結:
  45. 50. Lin, S. Y.; Chen, N. T.; Sum, S. P.; Lo, L. W.; Yang, C. S., Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem Commun 2008, (39), 4762-4764.
    連結:
  46. 51. Thanh, N. T. K.; Green, L. A. W., Functionalisation of nanoparticles for biomedical applications. Nano Today 2010, 5 (3), 213-230.
    連結:
  47. 52. Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Radler, J.; Natile, G.; Parak, W. J., Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett 2004, 4 (4), 703-707.
    連結:
  48. 53. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298 (5599), 1759-1762.
    連結:
  49. 參考文獻
  50. 5. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307 (5709), 538-544.
  51. 13. Li J, K. C., Lin CJ, Cai ZH, Chen CY and Chang WH, Facile Method for Gold Nanoclusters Synthesis and Fluorescence Control using Toluene and Ultrasound. J Med Biol Eng 2013 33, 23-28.
  52. 27. Wilcoxon, J. P. M., J. E. Parsapour, F. Wiedenman, B.; Kelley, D. F., Photoluminescence from nanosize gold clusters. The Journal of Chemical Physics 1986, 33 (12), 7923-7936.
  53. 37. H. Fujita, M. I. a. H. Y., Nat Methods 1962, 196, 666–667.
  54. 46. Jolck, R. I.; Feldborg, L. N.; Andersen, S.; Moghimi, S. M.; Andresen, T. L., Engineering Liposomes and Nanoparticles for Biological Targeting. Adv Biochem Eng Biot 2011, 125, 251-280.