题名

三團聯聚乙二醇-聚己內酯共聚合物選擇性發酵及降低克林黴素劑量於青春痘治療之研究

并列篇名

Triblock poly(ethylene glycol)-block-poly(ε-caprolactone) for selective fermentation and reduction of dose of clindamycin in the treatment of acne

DOI

10.6840/cycu201600855

作者

高馨柔

关键词

三團聯 ; 聚乙二醇 ; 發酵 ; 青春痘 ; triblock ; poly(ethylene glycol) ; fermentation ; acne

期刊名称

中原大學生物醫學工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

謝明發

内容语文

繁體中文

中文摘要

表皮葡萄球菌為人體皮膚常見之微生物,能夠發酵甘油、蔗糖以及聚乙二醇類高分子,產生短鏈脂肪酸,且這些發酵產物可以抑制過度生長的青春痘病原菌(痤瘡丙酸桿菌)。本研究從正常人皮膚篩選出黏金色棒狀桿菌,發現該細菌與表皮葡萄球菌均能選擇性地發酵甘油、蔗糖與三團聯聚乙二醇-聚己內酯共聚合物。相反地,痤瘡丙酸桿菌則無法發酵。研究還發現,早期及中期痤瘡患者的痤瘡切片之發炎激素IL-8表現,顯著高於正常皮膚;將該組織與蔗糖、黏金色棒狀桿菌共培養後,能顯著減少IL-8表現。由此推測,痤瘡丙酸桿菌的數量也相對減少。進一步在ICR小鼠耳朵施打痤瘡丙酸桿菌以及三團聯聚乙二醇-聚己內酯共聚合物,發現能夠減少 抗生素克林霉素的使用劑量。因此,透過皮膚篩選出能夠選擇性發酵高分子的黏金色棒狀桿菌,其功效與腸道益生菌類似,可視為一種皮膚益生菌。本研究亦發現三團聯聚乙二醇-聚己內酯共聚合物可作為治療痤瘡丙酸桿菌之佐劑,減少抗生素的使用劑量。

英文摘要

Our results demonstrate that Staphylococcus epidermidis (S. epidermidis) and Corynebacterium aurimucosum (C. aurimucosum), two bacteria in the human skin microbiome, can ferment glycerol, sugars or polyethylene glycol PEG-based polymers to produce various short-chain fatty acids (SCFAs) which suppressed the growth of Propionibacterium acnes (P. acnes), a bacterium highly associated with the progress of acne vulgaris. Sugars and PEG-based polymers were chosen as selective fermentation initiators which exclusively induced the fermentation of S. epidermidis or C. aurimucosum, but not P. acnes. Interestingly, sugars and PEG-based polymers can efficiently suppress the growth of P. acnes. An acne ex vivo explant was established by using acne biopsies collected from patients with acne vulgaris at the early and middle stages. The levels of pro-inflammatory interleukin (IL)-8 cytokine in early- and middle-staged acnes were significantly higher than those in healthy skins. Incubation of acne ex vivo explants with sucrose remarkably reduced the level of IL-8 and the number of P. acnes. Our results demonstrate for the first time that sugars and PEG-based polymers are SFIs which can be used to specifically manipulate the fermentation of probiotic bacteria in the human skin microbiome. Results from mouse studies revealed that PEGDMA and PCL-PEG-PCL, a poly(caprolactone) triblock, function as antibiotic adjuvants which can considerably reduce the effective doses of clindamycin, a clinically-used acne antibiotic. Overall, the novelty of our studies at least includes identifying C. aurimucosum as a skin probiotic bacterium and defining the PEG-based polymers as antibiotic adjuvants.

主题分类 醫藥衛生 > 醫藥總論
工學院 > 生物醫學工程學系
参考文献
  1. . Geoffrey D. Hannigan(2013), Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus. Cold Spring Harb Perspect Med 2013; doi: 10.1101
    連結:
  2. 2. Grice EA, Segre JA. 2012. The human microbiome: Our second genome. Annu Rev Genomics Hum Genet 13:151–170.
    連結:
  3. 3. Nakatsuji T, Gallo RL. 2012. Antimicrobial peptides: Old molecules with new ideas. J Invest Dermatol 132: 887–895.
    連結:
  4. 4. Muya Shu(2013), Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus
    連結:
  5. 5. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276: 2027–2030.
    連結:
  6. 6. Falagas ME, Rafailidis PI, Makris GC (2008) Bacterial interference for the prevention and treatment of infections. Int J Antimicrob Agents 31: 518–522
    連結:
  7. .7. Yanhan Wang ,et al, Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes : implications of probiotics in acne vulgaris
    連結:
  8. 8. White GM (1998) Recent findings in the epidemiologic evidence, classification,and subtypes of acne vulgaris. J Am Acad Dermatol 39:S34–7
    連結:
  9. 9. V. K. Garg , S. Sinha , R. Sarkar , Dermatol. Surg. 2009 , 35 , 59 – 65
    連結:
  10. 11. M. Taglietti , C. N. Hawkins , J. Rao , Skin Therapy Lett. 2008 , 13 , 6 – 8 .
    連結:
  11. 12. Dudley 2004Dudley R (2004) Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr Comp Biol 44(4):315–23. doi:10.1093/icb/44.4.315.
    連結:
  12. 14. Prediction of in vivo short-chain fatty acid production in hindgut fermenting
    連結:
  13. 15. Burtenshaw, J.M., 1942. The mechanism of self-disinfection of the human skin and its appendages. The Journal of Hygiene 42: 184-210..
    連結:
  14. 16. Burtenshaw JM (1942) The mechanism of self-disinfection of the human
    連結:
  15. skin and its appendages. J Hyg (Lond) 42(2):184–210
    連結:
  16. 17. Ryssel H, Kloeters O, Germann G, Schafer T, Wiedemann G, Oehlbauer M (2009) The antimicrobial effect of acetic acid—an alternative to common local antiseptics? Burns 35(5):695–700. doi:10.1016/j. burns.2008.11.009.
    連結:
  17. 18. Sebastian S, Phillip LE, Fellner V, Idziak ES (1996) Comparative assessment of bacterial inoculation and propionic acid treatment of aerobic stability and microbial populations of ensiled high-moisture ear corn. J Anim Sci 74(2):447–56
    連結:
  18. 19. Yanhan Wang ,et al, Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes : implications of probiotics in acne vulgaris
    連結:
  19. 20. Lutmer, J.E., Yates, A.R., Bannerman, T.L., Marcon, M.J. and Karsies, T.J., 2013. Purulent pericarditis secondary to community-acquired, methicillin-resistant Staphylococcus aureus in previously healthy children. A sign of the times? Annals of the American Thoracic Society 10: 235-238.
    連結:
  20. 21. Ostling CE, Lindgren SE (1993) Inhibition of enterobacteria and Listeria growthby lactic, acetic and formic acids. J Appl Bacteriol 75: 18–24.
    連結:
  21. 22. Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82: 632–639.
    連結:
  22. 23. Dissaya Pornpattananangkul, et al. In Vivo Treatment of Propionibacterium acnes Infection with Liposomal Lauric Acids
    連結:
  23. 24. Y. Wang, et al.Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300.
    連結:
  24. 26. Y. Wang, et al.Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300
    連結:
  25. 27. J. Nyirady , R. M. Grossman , M. Nighland , R. S. Berger , J. L. Jorizzo ,
    連結:
  26. J. Dermatolog. Treat. 2001 , 12 , 149 – 157 .
    連結:
  27. 29. Tae-Wan Lee, et al.Hydrogel patches containing Triclosan for acne treatment, European Journal of Pharmaceutics and Biopharmaceutics 56 (2003) 407–412
    連結:
  28. 32. E.A. EADY,et al, Effects of benzoyl peroxide and erythromycin alone and in combination against antibiotic-sensitive and -resistant skin bacteria from acne patients. Article first published online: 29 JUL 2006 DOI: 10.1111/j.1365-2133.1994.tb08519.x
    連結:
  29. 33. Katarina Chiller, et al, Skin Microflora and Bacterial Infections of the Skin, ournal of Investigative Dermatology Symposium Proceedings (2001) 6, 170–174; doi:10.1046/j.0022-202x.2001.00043.x
    連結:
  30. 35. Holger Brüggemann,et al, The Complete Genome Sequence of Propionibacterium Acnes, a Commensal of Human Skin, Vol. 305, Issue 5684, pp. 671-673 DOI: 10.1126/science.1100330
    連結:
  31. 36. Rachel M. McLoughlin,et al, Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma, Journal of Allergy and Clinical Immunology Volume 127, Issue 5, May 2011, Pages 1097–1107
    連結:
  32. 37. Gregor Reid,et al, Can bacterial interference prevent infection? Trends in Microbiology Volume 9, Issue 9, 1 September 2001, Pages 424–428
    連結:
  33. 39. A. P. Desbois , V. J. Smith , Appl. Microbiol. Biotechnol. 2010 , 85 ,1629 – 1642
    連結:
  34. 40. J. H. COVE , et al, An analysis of sebum excretion rate, bacterial population and the production rate of free fatty acids on human skin, British Journal of Dermatology Article first published online: 29 JUL 2006 DOI: 10.1111/j.1365-2133.1980.tb07260.x
    連結:
  35. 41. Jon J. Kabara ,et al, Fatty Acids and Derivatives as Antimicrobial Agents, Antimicrobial Agents and Chemotherapy, Chemother. July 1972 vol. 2 no. 1 23-28, doi: 10.1128/AAC.2.1.23
    連結:
  36. 42. Shruti Naik, et al, Compartmentalized Control of Skin Immunity by Resident Commensals, Science, Science 31 Aug 2012: Vol. 337, Issue 6098, pp. 1115-1119 DOI: 10.1126/science.1225152
    連結:
  37. 43. James J. Leyden ,et al. Propionibacterium acnes resistance to antibiotics in acne patients, Journal of the American Academy of Dermatology Volume 8, Issue 1, January 1983, Pages 41–45
    連結:
  38. 44. UTA JAPPE, Pathological Mechanisms of Acne with Special Emphasis on Propionibacterium acnes and Related Therapy, Taylor&Francis healthsciences, Acta Derm Venereol 2003; 83: 241–248
    連結:
  39. 45. Andrew P. Desbois, et al, Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential, Applied Microbiology and Biotechnology February 2010, Volume 85, Issue 6, pp 1629-1642
    連結:
  40. 46. Richard A. Bojar , et al.Acne and propionibacterium acnes, Clinics in Dermatology Volume 22, Issue 5, September–October 2004, Pages 375–379
    連結:
  41. 47. Teruaki Nakatsuji,et al, Antimicrobial Property of Lauric Acid Against Propionibacterium Acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris, Journal of Investigative Dermatology (2009) 129, 2480–2488; doi:10.1038/jid.2009.93;
    連結:
  42. 50. Per Valdemar Persson, et al. Selective Organocatalytic Ring-Opening Polymerization: A Versatile Route to Carbohydrate-Functionalized Poly(ε-caprolactones), Macromolecules, 2004, 37 (16), pp 5889–5893 DOI: 10.1021/ma049562j
    連結:
  43. 52. JOACHIM FRINGS, et al.Enzymes Involved in Anaerobic Polyethylene
    連結:
  44. 54. CATHERINE A. MURPHY, et al.Fusarium Polycaprolactone Depolymerase Is Cutinase, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1996, p. 456–460 0099-2240/96
    連結:
  45. 60. Pierre Potier, et al.Proteinase N-catalysed transesterifications in DMSO–water and DMF–water: preparation of sucrose monomethacrylate, TETRAHEDRON LETTERS,Tetrahedron Letters 41 (2000) 3597–3600
    連結:
  46. 61. Neomy Zaquen, et al.Facile Design of Degradable Poly(b-thioester)s with Tunable Structure and Functionality, JOURNAL OF POLYMER SCIENCE, DOI: 10.1002/pola.26986
    連結:
  47. 62. Sepideh Khoee, et al.Synthesis of magnetite/polyamino-ester dendrimer based on PCL/PEGamphiphilic copolymers via convergent approach for targeted diagnosis and therapy, Polymer 54 (2013) 5574-5585
    連結:
  48. 63. Seynabou Lo, et al.Urinary tract infection with Corynebacterium aurimucosum after urethroplasty stricture of the urethra: a case report
    連結:
  49. 64. Kweon, H., et al., A novel degradable tissue engineering. Biomaterials, 2003. 24(5): p. 801-8.
    連結:
  50. 65. Journal of Tissue Engineering Editor's update: open, rigorous and J Tissue Eng, 2013. 4: p. 2041731413507760.
    連結:
  51. 66. Tanaka, K., et al., Development of cell-penetrating systemic gene delivery. MPEG-PCL diblock copolymeric nanoparticles for Int J Pharm, 2010. 396 (1-2): p. 229-38.
    連結:
  52. 67. Meerod, S., et al., Magnetite nanoparticles bilayer of poly(ethylene glycol) methyl ether-poly(epsilon-caprolactone) copolymers. Polymer, 2008. 49(18): p. 3950-3956
    連結:
  53. 70. Atieh Khamis, et al.,Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium. J. Clin. Microbiol.doi:10.1128/JCM.43.4.1934-1936.2005
    連結:
  54. 71. Gabriela Zárate, et al.Dairy Propionibacteria:Less Conventional Probiotics to Improve the Human and Animal Health. Additional information is available at the end of the chapter http://dx.doi.org/10.5772/50320
    連結:
  55. 74. J. Spížek, T. Řezanka, et al,Lincomycin, clindamycin and their applications. Applied Microbiology and Biotechnology May 2004, Volume 64, Issue 4, pp 455–464
    連結:
  56. 10. H. Gollnick , W. Cunliffe , D. Berson , B. Dreno , A. Finlay , J. J. Leyden ,A. R. Shalita , D. Thiboutot , J. Am. Acad. Dermatol. 2003 , 49 , S1 – 37 .J. S. Strauss , D. P. Krowchuk , J. J. Leyden , A. W. Lucky , A. R. Shalita ,E. C. Siegfried , D. M. Thiboutot , A. S. Van Voorhees , K. A. Beutner ,C. K. Sieck , R. Bhushan , J. Am. Acad. Dermatol. 2007 , 56 , 651 – 663 .
  57. 13. Millet S, Van Oeckel MJ, Aluwe M, Delezie E, De Brabander DL (2010)
  58. mammals: problems and pitfalls. Crit Rev Food Sci Nutr 50: 605–619
  59. 25. Hobdy, E. and Murren, J., 2004. AN-9 (Titan). Current Opinion in Investigational Drugs 5: 628-634.26.
  60. Y. H. Kim , A. G. Martin , A. G. Pandya , K. K. Schulz , J. S. Strauss ,
  61. 28. J. S. Strauss , D. P. Krowchuk , J. J. Leyden , A. W. Lucky , A. R. Shalita ,E. C. Siegfried , D. M. Thiboutot , A. S. Van Voorhees , K. A. Beutner , C. K. Sieck , R. Bhushan , J. Am. Acad. Dermatol. 2007 , 56 , 651 – 663
  62. 30. H.N. Bhargava, PhD, Patricia A. Leonard, BS, Triclosan: Applications and safety, Volume 24, Issue 3, June 1996, Pages 209–218
  63. 31. Chen, Chao-Hsuan,et al, An Innate Bactericidal Oleic Acid Effective Against Skin Infection of Methicillin-Resistant Staphylococcus aureus: A Therapy Concordant with Evolutionary Medicine, J. Microbiol. Biotechnol. (2011), 21(4), 391–399 doi: 10.4014/jmb.1011.11014
  64. 34. Elizabeth A. Grice,et al, The skin microbiome, Nature Reviews Microbiology 9, 244-253 (April 2011)
  65. 38. A. M. Layton , B. Dreno , H. P. Gollnick , C. C. Zouboulis , J. Eur. Acad. Dermatol. Venereol. 2006 , 20 , 773 – 776
  66. 48. K. J. McGINLEY,et al.Regional Variations in Density of Cutaneous Propionibacteria: Correlation of Propionibacterium acnes Populations with Sebaceous Secretion, JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1980, p. 672-675 0095-1137/80/11-0672/04$02.00/0
  67. 49. FUSAKO KAWAI,et al. Bacterial Oxidation of Polyethylene Glycol, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1978, p. 679-684 0099-2240/78/0035-0679$02.00/0
  68. 51. DARYL F. DWYER, et al. Degradation of Ethylene Glycol and Polyethylene Glycols by Methanogenic Consortiat, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 1983, p. 185-190 0099-2240/83/070185-06
  69. Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, JUlY 1992, p. 2164-21670099-2240/92/072164-04
  70. 53. STEFAN WAGENER, et al.Fermentative Degradation of Nonionic Surfactants and Polyethylene Glycol by Enrichment Cultures and by Pure Cultures of Homoacetogenic and Propionate-Forming Bacteria, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1988, p. 561-565
  71. 0099-2240188/020561-05
  72. 55. DARYL F. DWYER, et al.Metabolism of Polyethylene Glycol by Two Anaerobic Bacteria,Desulfovibrio desulfuricans and a Bacteroides sp., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, OCt. 1986, p. 852-8560099-2240/86/100852-05
  73. 56. A. TORRES, et al.Screening of Microorganisms for Biodegradation of Poly(Lactic Acid) and Lactic Acid-Containing Polymers, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 1996, p. 2393–2397 0099-2240/96
  74. 57. KARL-ERICH JAEGER, et al.Substrate Specificities of Bacterial Polyhydroxyalkanoate Depolymerases and Lipases: Bacterial Lipases
  75. Hydrolyze Poly(v-Hydroxyalkanoates), APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1995, p. 3113–3118
  76. 0099-2240/95
  77. 58. Yves Queneau, et al.Recent progress in the synthesis of carbohydrate-based
  78. amphiphilic materials: the examples of sucrose and isomaltulose,Science Direct, Carbohydrate Research 343 (2008) 1999–2009
  79. 59. W. Clark Still, et al.Rapid Chromatographic Technique for Preparative
  80. Separations with Moderate Resolution, Department of Chemistry, Columbia Uniuersity, Notes VJ. Org. Chem., Vol. 43, No. 14, 1978
  81. 68. STEFAN WAGENER, et al., Fermentative Degradation of Nonionic Surfactants and Polyethylene Glycol by Enrichment Cultures and by Pure Cultures of Homoacetogenic and Propionate-Forming Bacteria. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1988, p. 561-565
  82. 0099-2240188/020561-05$02.00/0
  83. 69. DARYL F. DWYER, et al.,Metabolism of Polyethylene Glycol by Two Anaerobic Bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, OCt. 1986, p. 852-856 0099-2240/86/100852-05$02.00/0
  84. 72. D F Dwyer, et al.Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Appl Environ Microbiol. 1983 Jul; 46(1): 185–190.
  85. 73. BERNHARD SCHINKF, et al,ermentative Degradation of Polyethylene Glycol by a Strictly Anaerobic, Gram-Negative, Nonsporeforming Bacterium,Pelobacter venetianus. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,June1983,p.1905-19130099-2240/83/061905-09$02.00/0