题名

氣體反壓與動態模具溫控技術應用於熱塑性彈性體高減重比之超臨界微細發泡射出成型泡體均勻性之研究

并列篇名

Study of Foaming Uniformity Control of High Weight Reduction Microcellular Injection Molded Thermoplastic Elastomer

DOI

10.6840/cycu201700851

作者

李冠樺

关键词

超臨界微細發泡成型 ; 泡體控制 ; 熱塑性彈性體 ; 減重比 ; Microcellular injection molding ; cell size control ; thermal plastic elastomer ; weight reduction

期刊名称

中原大學機械工程學系學位論文

卷期/出版年月

2017年

学位类别

博士

导师

陳夏宗

内容语文

繁體中文

中文摘要

超臨界微細發泡製程兼具環保節能、省料、縮短循環周期、降低成本等優點,被廣泛應用,舉凡汽車工業、包裝應用、3C 家電、工業用零組件都涵蓋在內,在這些新興應用中,鞋底市場也不容忽視。熱塑性彈性體聚氨酯在眾多彈性材料中具有高耐磨,高彈性,抗疲勞,耐化學性等諸多優點,非常適合作為球鞋大底的材料,但也因為其比重大,硬度高,減震性能較差尚未完整應用在發泡中底的成型上。在目前MuCell® 製程應用於高減重比之 聚氨酯之成型上主要問題在於純 MuCell® 成型對於產品前、中、後段之發泡均勻度以及厚度方向皮層至核心層的均勻度較差,進而影響鞋底最重要的彈性性質。 本研究將氣體反壓以及動態模具溫度控制技術導入 MuCell® 成型鞋底的製程中,分別透過泡體平均尺寸、發泡密度、泡體各尺寸數量分佈以及硬度的探討釐清找出最佳控制參數,使得整體泡體尺寸及均勻度改善。研究結果顯示透過動態模溫控制在高溫充填低溫冷卻的情況下,可以將平均泡體抑制在 10~20µm 內且有 40%以上之 20~40µm 泡體;透過氣體反壓技術則可將超臨界含量 1.0wt%之試片泡體均質抑制在 10~50µm 的區間內且超過50%泡體尺寸數量集中在 10~30µm;最後在協同控制的部份則可將泡體平 均質以及 84%數量集中在 20~40µm 的區間內,達成均勻度之改善。

英文摘要

Microcellular injeciton molding process is widely used in different industry including automotive, packaging, sporting goods, industrial and electrical parts since Mucell process itself offers many advantages such as material and energy saving, low cycle time, cost effective and dimension stability of the products. Thermoplastic Polyurethane (TPU) is a common material for molding the outsole of shoes because of its outstanding properties such as hardness, abrasion resistance, and elasticity. Many shoe manufacturers started to apply Mucell® process into TPU midsoles manufacturing, but yet still has several problems to move in mass production, the main problem needs to be solved is the uniformity of the cell size in the midsole, the cell size will be affected by injection process induced pressure drops which lower the cell size uniformity in different region and lower the bouncing properties. To solve this problem, dynamic mold temperature control and gas counter pressure technology were applied to achieve the uniform cell size distribution midsole using Mucell process in this study. Several process parameters were compared and discussed through average cell diameter distribution, cell density, hardness and uniformity of the cells. The results show that 40% of cell diameter can be controlled within 20~40µm under DMTC and 50% of the cells diameter can be controlled into 10~30 µm under GCP. The best results which combine DMTC and GCP into Mucell process can achieve over 80% of the cell size within 20~40µm improve the uniformity of midsole manufacturing.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. 3. C. B. Park and N. P. Suh, “Extrusion of microcellular polymers using a rapid pressure drop device”, Society of Plastic Engineers Technical Papers, Vol.39, pp.1818-1822 (1993).
    連結:
  2. 6. Eckert, C.A., "Supercritical fluids as solvents for chemical and materials processing", Nature 383, pp313-318 (1996).
    連結:
  3. 7. K. T. Okamoto, "Microcellular Processing", Hanser Gardner Publishers (2003).
    連結:
  4. 9. Zirkel, L., M. Jakob and H. Münstedt, Journal of Supercritical Fluids, 49(1), pp.103-pp.110 (2009).
    連結:
  5. 10. Ramesh, N. S., Rasmussen, D. H. and Campbell, G. A., 1991, "Numerical and Experimental Studies of Bubble Growth during the Microcellular Foaming Process", Polymer Engineering and Science, Vol. 31, No. 23, pp.1657.
    連結:
  6. 11. J. R. Royer, Y. J. Gay, J. M. Desimone, and S. A. Khan, "High-Pressure Rheology of Polystyrene Melts Plasticized with CO2: Experimental Measurement and Predictive Scaling Relationships", Journal of Polymer Science, Part B: Polymer Physics, Vol.8, pp.3168 (2000).
    連結:
  7. 12. C. Wang, K. Cox, and G. A. Campbell, "Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process", SPE ANTEC Technical Papers, pp. 406 (1995).
    連結:
  8. 16. J. S. Colton and N. P. Suh, Polym. Eng. Sci., 27, p. 500 (1987).
    連結:
  9. 17. C. Wang, K. Cox, and G. A. Campbell, "Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process", SPE ANTEC Technical Papers, pp. 406 (1995).
    連結:
  10. 18. M. Shimbo, D. F. Baldwin and N. P. Suh, "The Viscoelastic Behavior of Microcellular Plastics with Varying Cell Size", Polymer Engineering and Science, Vol.35, pp.1387 (1995).
    連結:
  11. 21. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, p. 1148 (1994).
    連結:
  12. 22. V. Kumar, SPE ANTEC Technical Papers, p.7 (2002).
    連結:
  13. 24. M. Yuan and L. S. Turng, "Microstructure and Mechanical Properties of Microcellular Injection Molded Polyamide-6 Nanocomposites", Polymer, Vol.46, pp.7273 (2005).
    連結:
  14. 25. D. I. Collias, D. G. Baird and R. J. M. Borggreve, "Impact Toughening of Polycarbonate by Microcellular Foaming", Polymer, Vol.25, pp.3978 (1994).
    連結:
  15. 26. D. I. Collias and D. G. Baird, "Tesile Toughness of Microcellular Foams of Polystyrene, Styrene-acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of The Same
    連結:
  16. 29. C. Wang, K. Cox, and G. A. Campbell, "Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process", SPE ANTEC Technical Papers, pp. 406 (1995).
    連結:
  17. 30. J. R. Royer, Y. J. Gay, J. M. Desimone, and S. A. Khan, "High-Pressure Rheology of Polystyrene Melts Plasticized with CO2: Experimental Measurement and Predictive Scaling Relationships", Journal of Polymer Science, Part B: Polymer Physics, Vol.8, pp.3168 (2000).
    連結:
  18. 32. L. J. Gerhardt, C. W. Manke and E. Gulari, “Rheology of Polydimethylsiloxane Swollen with Supercritical Carbon Dioxide”, Journal of polymer science. Part B. Polymer physics, Vol. 35, No. 3, pp. 523-534 (1997).
    連結:
  19. 33. C. Kwag, C. W. Manke and E. Gulari, “Rheology of Molten Polystyrene with Dissolved Supercritical and Near-Critical Gases”, Journal of Polymer Science Part B: Polymer Physics, Vol. 37, Iss. 19, pp. 2771-2781
    連結:
  20. 34. 鍾明修, ”超臨界微細發泡射出成型製程特性之研究,中原大學博士論文” (2006).
    連結:
  21. 36. S. W. Cha and J. D. Yoon, “The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics”, Polymer-Plastics Technology and Engineering, 44, 795-803, 2005.
    連結:
  22. 37. J. J. Lee and L. S. Turng, “Improvement in Surface Quality of Microcellular Injection Molded Parts”, SPE Technical Paper, 2009.
    連結:
  23. 38. J. J. Lee and L. S. Turng, “Improving Surface Quality of Microcellular Injection Molded Parts Through Mold Surface Temperature Manipulation With Thin Film Insulation”, Polymer Engineering and Science, 50, 1281-
    連結:
  24. 1289, 2010.
    連結:
  25. 40. S. C. Chen, Y. W. Lin, R. D. Chien and H. M. Li, “Variable Mold Temperature to Improve Surface Quality of Microcellular Injection Molded Parts Using Induction Heating Technology”, Advances in Polymer Technology, 27 , 224-232, 2008.
    連結:
  26. 41. T. H. Chong, Y. W. Ha and D. J. Jeong, “Effect of Dissolved Gas on the Viscosity of HIPS in the Manufacture of Microcellular Plastics”, Polymer Engineering and Science, 43, 1337-1344, 2003.
    連結:
  27. 42. S. C. Chen, P. S. Hsu, Y. W. Lin, “Establishment of Gas Counter Pressure Technology and Its Application to Improve the Surface Quality of Microcellular Injection Molded Parts”, International Polymer Processing,
    連結:
  28. 43. 許評順,“模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究”,私立中原大學博士論文,2011。
    連結:
  29. 44. 蕭宇倫,“模內氣體反壓與動態模溫協同控制系統應用於超臨界微細發泡射出成型發泡控制及產品機械性質之研究”,私立中原大學碩士論文,2011。
    連結:
  30. 50. N. H. Fletcher, “Van Der Waal’s Equation and Nucleation Theory”, Europe Journal of Physics, Vol. 14, pp. 29-35 (1993).
    連結:
  31. 51. M. Amon and C. D. Denson, ‘‘A study of the dynamics of foam growth:analysis of the growth of closely spaced spherical bubbles,’’ Polym. Eng. Sci. 24, pp. 1026-1034 (1984).
    連結:
  32. 52. J. J. Feng and C. A. Bertelo, “Prediction of Bubble Growth and Size Distribution in Polymer Foaming Based on a New Heterogeneous Nucleation Model”, Journal of Rheology, Vol. 48, No. 2, pp. 439-462 (2004).
    連結:
  33. 53. R. J. Koopmans, J. C. F. D. Doelder and A. N. Paquet, “Modeling Foam Growth in Thermoplastics”, Advanced Materials, No. 23, pp. 1873-1880 (2000).
    連結:
  34. 54. C. A. Villamizar and C. D. Han, Studies on structural foam processing. II. Bubble dynamics in foam injection molding, Polym. Eng. Sci. 18, p. 699 (1978).
    連結:
  35. 55. P. S. Epstein and M. S. Plesset, “On the stability of gas bubbles in liquid-gas solutions”, J. Chem. Phys. 18, pp. 1505-1509 (1950).
    連結:
  36. 56. C. D. Han and H. J. Yoo, 'Studies on structural foam processing. Part IV: Bubble growth during molding filling,' Polym. Eng. Sci. 21, 518-533 (1981).
    連結:
  37. 57. P. S. Epstein and M. S. Plesset, “On the stability of gas bubbles in liquid-gas solutions”, J. Chem. Phys. 18, pp. 1505-1509 (1950).
    連結:
  38. 4. 王昭欽,2002,「發泡之原理及其在押出成型加工之應用」,工業技術人才培訓計劃講義,財團法人塑膠發展中心。
  39. 5. Lee, S.T., Foam Extrusion: Principles and Practice. CRC press, Boca Raton (2002).
  40. 8. Li, D., Z. Liu, B. Han, L. Song, G. Yang and T. Jiang, Polymer, 43(19),(2002), 5363-5367.
  41. 13. Lee, M., Park, C. B. and Tzoganakis, C., "Extrusion of PE/PS Blends with Supercritical Carbon Dioxide in a Twin-Screw Extruder and a Twin/Single Tandem System", SPE ANTEC Technical Papers, Vol. 43, p. 1991,(1997)
  42. 14. Mohebbi, A., A. Mehrabani-Zeinabad and M. Navid-Famili, Polymer Science Series A, 53(11), pp.1076-1085 (2011).
  43. 15. J. E. Martini, N. P. Suh and Waldman, F. A.: US Patent 4473665 (1984).
  44. 19. J. Xu and D. Pierick, Microcellular foam processing in reciprocating-screw injection molding machines, Trexel technical papers, Trexel Inc., pp. 152-156 (2001).
  45. 20. Molding Machines", Trexel Technical Papers, Trexel Inc. (2001).
  46. 23. N. P. Suh, "Innovation in Polymer Processing-Molding", Stevenson, J. F, (Eds), Hanser Publishers, Munich, pp.93 (1996).
  47. olymer Matrices and Microcellular Foams", Polymer Engineering and Science, Vol.35, pp.1167 (1995).
  48. 27. J. E. Martini, F. A. Waldman and N. P. Suh, "The Production and Analysis of Microcellular Thermoplastic Foam", SPE ANTEC Technical Papers, Vol.28, pp.674 (1982).
  49. 28. L. M. Matuana, C. B. Park and J. J. Balatinecz, "Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride", Cellular Polymer, Vol.17, pp.1 (1998).
  50. 31. TECHNYL® XCELL, http://www.rhodia.com
  51. (1999).
  52. 35. J. D. Yoon, S. K. Hong, J. H. Kim and S. W. Cha, “A Mold Surface Treatment for Improving Surface Finish of Injection Molded Microcellular Parts”, Cellular Polymers, 23, 39-47, 2004.
  53. 39. ONO SANGYO Corp.,小野朱氏會社技術報告,日本, 2004。
  54. 26, 275-282, 2011.
  55. 45. P. Egger, M. Fischer, H. Kirschling and A. K. Bledzki, “A Status Report (2):Versatility for Mass Production in MuCell® Injection Moulding”,Kunststoffe Plast Europe, 1, 72-76, 2006.
  56. 46. W. Michaeli and A. Cramer, “Increasing the Surface Quality of FoamedInjection Molded Parts, Developments in Advanced Injection Moulding Technologies”, SPE Technical Papers, 1210-1214, 2006.
  57. 47. Dipl.-Ing. and C. Lettowsky , “Developments in Advanced Injection Moulding Technologies: Foam Injection Moulding and Water Injection Technique”,中原大學模具中心微成型與微特徵模具加工技術研討會,臺灣,2006。
  58. 48. 74. J. P. Holman, “Heat Transfer”, Mcgraw-Hill Book company Ltd., New York, 1996.
  59. 49. 吳舜英,徐敬一,“塑膠發泡成形技術”,高分子工業雜誌社,(2001)。