题名

應用實驗設計法於銅線打線製程之最佳化參數研究

并列篇名

Optimum Design for Cu Wire Bonding Process by Applying DOE Method

DOI

10.6840/CYCU.2011.00089

作者

徐權邁

关键词

裂紋 ; 彈坑實驗 ; 銅線 ; 實驗設計 ; Design of Experiment ; Copper wire ; Bond pad crack. ; Crater test

期刊名称

中原大學工業與系統工程學系學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

張國華

内容语文

繁體中文

中文摘要

近年來,因為金價的不斷上漲,封裝產業漸漸導入銅線(Copper wire)代替原有的金線(Gold wire)做為IC原件內部訊號的傳導材料。以材料性能來看,相關資料顯示,銅線在室溫(20oC)之下的電阻率為0.017 micro-ohm-m,同樣在室溫(20oC)下,金線的電阻率則為0.022 micro-ohm-m,因此銅線的導電性比黃金線高出25~30%。此外銅的溫度傳導性也比金線高出25%,用於晶片封裝中,散熱與省電表現自然比黃金來得好。 但是晶圓構造也朝向低電阻值與低介電係數的材料發展,鋁墊層(Al layer)由12k降至8k,甚至Low-K(K值為鋁墊層厚度),減少電路(metal)堆疊能改善時間延遲效應(R/C delay),降低功率耗損(power dissipation)及雜訊干擾(cross-talk noise)。 隨著銅線與低k值材料的同時使用衝擊晶片結構的機械強度,熱膨脹系數較高,對於IC封裝製程造成衝擊。裂紋與彈坑,一直是銅線封裝打線製程所遭遇的難題。本研究是以實際生產作業的情況,針對0.8mil銅線與Al layer 8k材料,使用DOE/Minitab的驗證方法,找出最佳化的作業條件,管控與提升封裝打線製程品質,達到品質穩定使銅線/低介電係數材料可大量生產的目標。 根據實驗的結果,增加最初壓合壓力(Initial force)能有效抑制超音波(USG Power)的輸出達到降低裂紋(Crack)發生的機率,同時產生較扁平的銅球而獲得更大的接觸面積來改善推球克數,提升作業性與可靠度。最後,建議縮短放電結球(EFO)時間控制球形大小避免銅球互相橋接問題。

英文摘要

The cost of gold has been dramatically increasing, therefore copper wire has been used to replace gold wire as conduction material. Regarding copper wire capability, if atmospheric temperature is under room temperature (about 20 degrees), the copper wire resistivity is 0.017micro-ohm-m. Gold wire resistivity under room temperature is 0.022micro-ohm-m. Comparing copper wire and gold wire electric conductivity, it shows that the copper wire is better than gold by about 25–30%. Besides, copper heat conductivity is better then gold by over 25%. Therefore, if the copper wire replaces gold wire in the assembly process, the heat dissipation and energy efficient performance will be improved. The material development of the wafer is trying to have electric resistance and low dielectric layer material, it results in that A1 layer is decrease from 12k or 8k and even Low-k. To reduce metal layers can improve the R/C delay problem, lower power dissipation and cross-talk noise. There is an impact on the IC package resulting from using the copper and low K material. It causes that the whole IC structure strength is getting worse and the coefficient of thermal expansion is getting higher. Crack and Crater have been problems of copper wire bounding process for a long time. Based on the practical product operation, we study the optimal operating situation especially focusing on 0.8mil copper wire and 8k Al layer material. In this thesis, we perform design of experiments(DOE) to study the cause-effect relation in the bonding process and find the optimal operating conditions to stabilize the quality and increase the capacity of production. Base on experimental results, increasing the initial force can inhibit the USG power and reduce the possibility of bond pad crack; flatter copper ball can increase contact area to allow high ball shear. It can improve the corresponding reliability; Short EFO fire time could control ball size to avoid ball bridge issue.

主题分类 電機資訊學院 > 工業與系統工程學系
工程學 > 工程學總論
参考文献
  1. [2] F.Y. Hung, T.S. Lui, L.H. Che and Y.T. Wang,”Recrystallization and Fracture Characteristics of Thin Copper Wire”, Journal of Materials Science, Vol.42, 2007, Springer Verlag.
    連結:
  2. [4] L. A. Lim, “Fine Pitch Copper Wire Bonding Process and Materials Study”, 2006.07.
    連結:
  3. [5] D.S. Liu and Y.C. Chao,“Effects of Dopant Temperature and Strain Rate on the Mechanical Properties of Micrometer Gold-Bonding Wire”, Journal of Electronic Material, Vol.32, No.3, 2003.
    連結:
  4. [7] S. Murali, N. Srikanth and Charles J. Vath III, Grains Deformation Substructres ans Slip Bands Observed in Thermosonic Copper Ball Bonding, Materials Characterizationm Vol.50, 2003.
    連結:
  5. [8] N. Srikanth, S. Murali, Y.M. Wong and Charles J. Vath III,”Critical Study of Thermosonic Copper Ball Bonding”, Thin solid Films, 2004.
    連結:
  6. [11] 丁志華、戴寶通,「田口實驗計畫法」,國家毫微米元件實驗室,毫微米通訊第八卷第三期,2007.12。
    連結:
  7. [12] 三聯科技 封裝事業一部,「銅線封裝技術」,三聯科技,2007.09。
    連結:
  8. [30] 劉春松,「鋁墊下電路型晶片銲線製程參數最佳化分析」,國立成功大學 工程科學系碩博士班 碩士論文,2009。
    連結:
  9. 英文
  10. [1] Amkor Technology, “Copper (Cu) Wire Bonding”, TS 105A, 2010.06.
  11. [3] Mark LaPedus, “Copper turns to gold in IC packaging”, EE times, 2010.09.
  12. [6] Douglas C. Montgomery, ”Design and Analysis of Experiment” 6th Edition, John Willy. & Sons, RNC, 2005.
  13. [9] L. C. Tan, “Copper Wire Bond Outlook”. SEMI Freescale Semiconductor (M) Sdn. Bhd. 2008.05.
  14. [10] C. Hang, C. Wang, M. Shi, X. Wu and H. Wu and H. Wang, “Study of Copper Free Air Ball in Thermo sonic copper Ball Bonding”, IEEE 6th International Conference on Electronic Packaging Technology, 2005.
  15. 中文
  16. [13] 田民波、顏怡文,「半導體電子元件構裝技術」,五南圖書出版社,2005.10。
  17. [14] 李少濠、劉湘麟、潘文生,「淺談半導體封裝製程用金線之製程技術」,電子月刊的十一卷第九期,2005.09。
  18. [15] 李榮賢,「構裝技術未來發展」,工研院電光所,2009.07。
  19. [16] 拓普產業研究所,「2010年半導體產業景氣展望」,拓普產業研究所,2010.01。
  20. [17] 林天行,「台灣電子構裝材料產業競爭力分析(上)」,IEK產業情報網,2006.02。
  21. [18] 林李旺,「快速精通實驗設計:邁向Six Sigma的關鍵方法」,全華圖書,2009.01。
  22. [19] 林刚强,「铜丝球銲工艺的理论与实践」,浙江华越芯装电子股份有限公司,电字工业专用设备,2008。
  23. [20] 林敏輝,「微細銅導線於系統晶片構裝之探討」,明新科技大學 產業研發碩士專班 碩士論文,2009。
  24. [21] 施心智,「具定向晶格效應於銅銲線製程之有限元素法模擬與分析」,國立中山大學 機械與機電工程學系研究所 碩士論文,2008。
  25. [22] 高華德,「熱效應於銅銲線接合製程之有限元素法模擬」,國立中山大學 機械與機電工程學系研究所 碩士論文,2009。
  26. [23] 張弘昇,「銅銲線製程接合度與可靠度分析」,義守大學機械與自動化工程學系碩士論文,2010.08。
  27. [24] 張巍耀,「金線與銅線在熱影響區的材料特性及其應用於銲線製程之動態分析」,義守大學 機械與自動化工程學系 碩士論文,2008.07。
  28. [25] 常红军,王晓春,费智霞,幕蔚,李习周,冯学贵,鲁明朕,「铜丝键合工艺研究」,天水华天科技股份有限公司,电子与封装 总第76期 第9卷,第8期,2009.08。
  29. [26] 曹松清,「半導體業擬導入銅線製程」,經濟部工業局半導體產業推動辦公室,2010.02。
  30. [27] 郭貴玲,「半導體封測廠銲線製程「金」、「銅」拉鋸戰」,財金文化,2010.01。
  31. [28] 陳家旭,「打線接合之實驗與有限元素研究」,國立交通大學 機械工程系 碩士論文,2002。
  32. [29] 黃冠霖,「銅導線接點與BGA錫球接點研究」,國立中山大學材料與光電科學學系研究所 碩士論文,2008。
  33. [31] 劉常勇,「台灣積體電路公司—晶圓代工的領導者」,國立中山大學企業管理學系教授,2009.11。
  34. [32] 鄭春生,「品質管理:現代化觀念與實務應用(第四版)(附學習光碟)」,全華圖書,2010.10。
  35. [33] 謝有順, “Assembly Whole Process training”, ASE Group, 2009.10.
  36. [34] 謝育倉,「K&S 8028 Gold Ball Wire Bonder Advance Parameter Training」,美商庫力索法股份有限公司高雄分公司教育訓練部,2010.02。
  37. [35] 顏楚喬,「銅線封裝產品之破壞性分析」,國立高雄應用科技大學 電子工程系 碩士論文,2009。
  38. [36] 蘇朝墩,「品質工程」,三民書局,2003.11。