题名

以氯化鈉/氯化銅為氯離子源之化學浴沉積法製備氯化亞銅薄膜特性研究

并列篇名

Fabrication of cuprous chloride films by chemical bath deposition using sodium chloride / cupric chloride as the source of chloride ions

DOI

10.6840/cycu201600873

作者

梁菀婷

关键词

氯化鈉 ; 氯化銅 ; 氯化亞銅 ; 化學浴沉積法 ; 銅基板 ; NaCl ; CuCl2 ; CuCl ; chemical bath deposition ; copper substrate

期刊名称

中原大學電子工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

温武義

内容语文

英文

中文摘要

本研究是以氯化鈉和氯化銅化合物共同作為氯離子的前驅物,而氯化銅亦同時為銅離子的前驅物,使用化學浴沉積法在銅基板上製備氯化亞銅薄膜。藉由改變實驗參數,如:摻入濃度、沉積時間、鹽酸浸漬...等,製備不同條件下沉積的氯化亞銅薄膜,通過分析它們的導電型態、光學特性、晶相結構、表面形貌、元素組成以及結構層,進行有系統地比較,尋找出最適當沉積參數及其特性研究,並且與使用單一氯化銅化合物為前驅物所製備出的氯化亞銅薄膜作比較。 首先是研究在不同濃度氯化鈉的摻入下對氯化亞銅薄膜之影響,並且與未摻入時所製備出的薄膜進行比較。所製備的薄膜之發光特性、晶相結構、表面形貌以及元素組成已經過詳細審查。從分析結果得知以氯化鈉與氯化銅化合物為兩種離子源前驅物下的良好品質之氯化亞銅薄膜已經通過化學浴沉積法實現,並且確認摻入比未摻入氯化鈉所製備出的薄膜之品質更好。藉此結果可證實以氯化鈉化合物增加氯離子源的理論是成功,有達成改善氯化亞銅薄膜中氯原子相對比率之狀況。 然後是研究改變薄膜沉積時間與鹽酸浸漬次數對氯化亞銅薄膜之影響。所製備的薄膜之發光特性、晶相結構、表面形貌、元素組成以及結構層已經過詳細審查。從分析結果發現未改變樣品所製備出的是平坦連續的氯化亞銅覆蓋層,薄膜厚度約為2微米,比未摻入氯化鈉所製備出的薄膜厚約1微米,並且其薄膜層是純的氯化亞銅結晶,與其相應的元素分佈是均勻的。另外,雖然延長薄膜沉積時間與增加鹽酸浸漬次數所製備出的是不連續的氯化亞銅覆蓋層(60min-3dipping、80min-4dipping),但是其品質並不輸於未摻入氯化鈉所製備出的薄膜,所以如此改變所製備出的氯化亞銅薄膜可以依照往後所要製成的元件之需求調整其結構層。藉此結果可證實增厚薄膜以減少Cu^+離子的形成的理論是成功,亦有達成改善氯化亞銅薄膜中氯原子相對比率之狀況。 另一方面為了改善薄膜之晶相品質,本研究也調查了在不同溫度與時間的熱退火處理下對氯化亞銅薄膜之影響。所製備的薄膜之導電型態、發光特性、晶相結構、表面形貌以及元素組成已經過詳細審查。從分析結果得知回火前、後所製備出的皆是n型氯化亞銅薄膜,並且發現薄膜的發光強度、結晶性、表面氯元素含量會隨著溫度提升而增加(150℃-1hr、200℃-1hr),再加上其表面形貌會也隨著溫度與時間的提升而更趨於平整,藉由上述分析結果證實熱退火處理是有助於提升氯化亞銅薄膜品質。值得一提的是於光激螢光光譜圖中觀察到在5.7K低溫下激子和雙激子的發光機制,特別是於室溫下明顯地觀察到自由激子的發射,而此特性意謂薄膜品質佳。以上分析結果對於氯化亞銅未來用以製備二極體元件有著重大的意義。 關鍵字:氯化鈉、氯化銅、氯化亞銅、化學浴沉積法、銅基板 *:作者 **:指導老師

英文摘要

This research is taking both sodium chloride (NaCl) and copper (II) chloride (CuCl_2) compound as precursor of chloride ions, while CuCl_2 is also taken as precursor of copper ions, and using chemical bath deposition (CBD) to prepare copper (I) chloride (CuCl) films on a copper (Cu) substrate. We prepare CuCl films deposited under different conditions by changing the parameters of the experiment, such as adding concentration, deposition time, hydrochloric acid (HCl) dip, etc. By analyzing their electrical properties, optical properties, phase structure, morphology of the surface, elemental composition and structure layer, we can conduct a systematic comparison to find out the most suitable deposition parameters and researches of their characteristics. Then we compare with the CuCl films prepared by using single CuCl_2 compound as precursor. First, we study the effect on the CuCl film grown with adding different concentrations of NaCl, and compared with the one grown with not adding NaCl. The light emission characteristics, phase structure, morphology of the surface and elemental composition of prepared films have detailed investigated. We can know from the analysis result that a good-quality CuCl film was achieved by CBD via taking NaCl and CuCl_2 compound as precursor of two kinds of ions source. And we confirmed the quality of the film grown with adding NaCl is better than the one without adding NaCl. We can prove the theory that using NaCl compound to increase chloride ions is successful by this result and we have achieved that improving relative ratio of chloride atoms in CuCl film. Next, we study the effect on the CuCl film grown with changing the deposition time of the film and HCl dip times. The light emission characteristics, phase structure, morphology of the surface, elemental composition and structure layer of prepared films have detailed investigated. We found the prepared CuCl-covered layer of simples without changing is flat and continuous from the analysis result. The thickness of the film is about 2 microns and about 1 micron thicker than the one without adding NaCl. Its film layer is pure CuCl crystallites and corresponding elemental distribution is uniform. In addition, although the film grown with extending deposition time of the film and increasing HCl dip times is discontinuous CuCl-covered layer (60min-3dipping and 80min-4dipping), its quality is not worse than the one without adding. So the CuCl film prepared by this changing can adjust its structure layer depending on the demand of devices need to fabricate afterwards. We can prove the theory that increasing the thickness of the film to decrease the formation of Cu^+ is successful by this result and also have achieved that improving relative ratio of chloride atoms in CuCl film. On the other hand, in order to improve the quality of phases of the film, this research also investigated the effect on the CuCl film under different temperature and time of the thermal annealing treatment. The light emission characteristics, phase structure, morphology of the surface, elemental composition and structure layer of prepared films have detailed investigated. We can know from the analysis result that the CuCl films prepared before- and after-annealing are all n-type and find the intensity of light emission, crystalline and contents of chloride on the surface of the film will increase with the temperature increasing (150℃-1hr and 200℃-1hr). And plus, its morphology of the surface also tends to be more flat with temperature and time increasing. We can prove the thermal annealing treatment is helpful to enhance the quality of CuCl film by the analysis results described above. Noticeably, we observed light emission mechanism of exciton and bi-exciton in low temperature photoluminescence (PL) spectra at 5.7K, especially, clearly observed the free exciton related emission at room temperature and this property means the quality of the film is good. The analysis results above have great significance for CuCl used in the fabrication of the diode elements in the future. Keywords: Sodium chloride (NaCl), copper (II) chloride (CuCl_2), copper (I) chloride (CuCl), chemical bath deposition (CBD), copper (Cu) substrate. *: The author **: The advisors

主题分类 電機資訊學院 > 電子工程學系
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. [3] S. C. Hung, K. J. Wang, S. M. Lan, T. N. Yang, W. Y. Uen, and G. C. Chi, Phys. Status Solidi A 209 (2012) 1053-1058.
    連結:
  2. [4] Y. C. Huang, L. W. Weng, W. Y. Uen, S. M. Lan, Z. Y. Li, S.-M. Liao, T. Y. Lin, and T. N. Yang, J. Alloys Compd. 509 (2011) 1980-1983.
    連結:
  3. [8] Y. C. Huang, Z. Y. Li, H. H. Chen, W. Y. Uen, S. M. Lan, S. M. Liao, Y. H. Huang, C. T. Ku, M. C. Chen, T. N. Yang, and C. C. Chiang, Thin Solid Films 517 (2009) 5537-5542.
    連結:
  4. [11] Z. Y. Li, C. Y. Lee, D. W. Lin, B. C. Lin, K. C. Shen, C. H. Chiu, P. M. Tu, H. C. Kuo, W. Y. Uen, R. H. Horng, G. C. Chi, and C. Y. Chang, IEEE Journal of Quantum Electronics 50 (2014) 354-363.
    連結:
  5. [12] C. H. Chiu, C. C. Lin, P. M. Tu, S. C. Huang, C. C. Tu, J. C. Li, Z. Y. Li, and W. Y. Uen, IEEE Journal of Quantum Electronics 48 (2012) 175-181.
    連結:
  6. [13] Z. Y. Li, W. Y. Uen, M. H. Lo, C. H. Chiu, P. C. Lin, C. T. Hung, T. C. Lu, H. C. Kuo, S. C. Wang, and Y. C. Huang, J. Electrochem. Soc. 156 (2009) 129-133.
    連結:
  7. [14] Z. Y. Li, S. M. Lan, W. Y. Uen, Y. R. Chen, M. C. Chen, Y. H. Huang, C. T. Ku, S. M. Liao, T. N. Yang, S. C. Wang, and G. C. Chi, J. Vac. Sci. Technol., A 26 (2008) 587-591.
    連結:
  8. [15] K. J. Chang, S. M. Lahn, Z. J. Xie, J. Y. Chang, W. Y. Uen, T. U. Lu, J. H. Lin, and T. Y. Lin, 306 (2007) 283-287.
    連結:
  9. [16] W. Y. Uen, Z. Y. Li, S. M. Lan, T. N. Yang, Y. W. Chen, and S. M. Liao, Solid State Electron. 51 (2007) 460-465.
    連結:
  10. [23] J. Rivera, L. A. Murray, and P. A. Hoss, J. Cryst. Growth 1 (1967) 171-176.
    連結:
  11. [24] B. Perner, J. Cryst. Growth 6 (1969) 86-90.
    連結:
  12. [25] T. Inoue, M. Kuriyama, and H. Komatsu, J. Cryst. Growth 112 (1991) 531-538.
    連結:
  13. [26] T. Goto, T. Takahashi, and M. Ueta, J. Phys. Soc. Jpn. 24 (1968) 314-327.
    連結:
  14. [27] G.R. Olbright, and N. Peyghamberian, Solid State Commun. 58 (1986) 337-341.
    連結:
  15. [28] A. Cowley, B. Foy, D. Danilieuk, P. J. McNally, A. L. Bradley, E. McGlynn, and A. N. Danilewsky, Phys. Status Solidi A 206 (2009) 923-926.
    連結:
  16. [29] L. Q. Phuong, M. Ichimiya, H. Ishihara, and M. Ashida, Phys. Rev. B 86 (2012) 235449.
    連結:
  17. [32] L. O'Reilly, G. Natarajan, P. J. McNally, S. Daniels, O. F. Lucas, A. Mitra, M. Martinez-Rosas, L. Bradley, A. Reader, and D. Cameron, Proc. SPIE 5825 (2005).
    連結:
  18. [34] A. Mitra, F. O. Lucas, L. O’Reilly, P. J. McNally, S. Daniels, and G. Natarajan, J. Mater. Sci. - Mater. Electron. 18 (2007) 21-23.
    連結:
  19. [36] M. Ando, S.I. Uozumi, I. Katayama, M. Ichimiya, M. Ashida, and J. Takeda, Phys. Status Solidi C 9 (2012) 2493-2496.
    連結:
  20. [37] M. Ando, S.I. Uozumi, I. Katayama, M. Ichimiya, M. Ashida, and J. Takeda, Phys. Status Solidi C 9 (2012) 2493-2496.
    連結:
  21. [39] T. Inoue, M. Kuriyama, and H. Komatsu, J. Cryst. Growth 112 (1991) 531-538.
    連結:
  22. [41] Yu-Ting Lin, “Fabrication of cuprous chloride films on copper substrate by chemical bath deposition”, Chung Yuan Christian University Department of Electronic Engineering Master Thesis (2015).
    連結:
  23. [43] S. A. Rodrigo, “Chemical bath deposition of Zn (S,O) buffer layers and application in Cd-free chalcopyrite-based thin-film solar cells and moduless”, Helmholtz-Zentrum Berlin (2009)
    連結:
  24. [48] Yu-Ting Lin, “Fabrication of cuprous chloride films on copper substrate by chemical bath deposition”, Chung Yuan Christian University Department of Electronic Engineering Master Thesis (2015).
    連結:
  25. [51] Gomathi Natarajan, S. Daniels, D. C. Cameron, P. J. McNally, Thin Solid Films, 516 (2008) 5531.
    連結:
  26. [1] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, Journal of Nanomaterials 2014 (2014) 1-7.
  27. [2] L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. N. Yang, C. H. Wu, H. F. Hong, W. Y. Ma, and C. C. Shen, Appl. Surf. Sci. 277 (2013) 1-6.
  28. [5] Y. C. Huang, Z. Y. Li, L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. Y. Lin, Y. H. Huang, J. W. Chen, and T. N. Yang, J. Vac. Sci. Technol., A 28 (2010) 1307-1311.
  29. [6] Y. C. Huang, Z. Y. Li, L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. Y. Lin, Y. H. Huang, J. W. Chen, T. N. Yang, and C. C. Chiang, J. Vac. Sci. Technol., A 27 (2009) 1260-1265.
  30. [7] S. C. Hung, P. J. Huang, C. E. Chan, W. Y. Uen, F. Ren, S. J. Pearton, T. N. Yang, C. C. Chiang, S. M. Lan, and G. C. Chi, Appl. Surf. Sci. 255 (2009) 6809-6813.
  31. [9] S. M. Lan, W. Y. Uen, C. E. Chan, K. J. Chang, S. C. Hung, Z. Y. Li, T. N. Yang, C. C. Chiang, P. J. Huang, M. D. Yang, G. C. Chi, and C. Y. Chang, J. Mater. Sci. - Mater. Electron. 20 (2009) 441-445.
  32. [10] S. C. Hung, P. J. Huang, C. E. Chan, W. Y. Uen, F. Ren, S. J. Pearton, T. N. Yang, C. C. Chiang, S. M. Lan, and G. C. Chi, Appl. Surf. Sci. 255 (2008) 3016-3018.
  33. [17] W. Y. Uen, Z. Y. Li, S. M. Lan, and S. M. Liao, J. Cryst. Growth 280 (2005) 335-340.
  34. [18] https://www.webelements.com/compounds/copper/copper_chloride.html
  35. [19] https://en.wikipedia.org/wiki/Copper(I)_chloride
  36. [20] J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95 (2009) 252105-1-252105-3.
  37. [21] M. M. Alam, F. O. Lucas, D. Danieluk, A. L. Bradley, S. Daniels, and P. J. McNally, Thin Solid Films 564 (2014) 104-109.
  38. [22] M. Soga, R. Imaizumi, Y. Kondo, and T. Okabe, J. Electrochem. Soc. 114 (1967) 388-390.
  39. [30] S. Yoshino, G. Oohata, Y. Shim, H. Ishihara, and K. Mizoguchi, Phys. Rev. B 88 (2013) 205311.
  40. [31] K. V. Rajani, F. O. Lucas, S. Daniels, D. Danieluk, A. L. Bradley, A. Cowley, M. M. Alam, and P. J. McNally, Thin Solid Films 519 (2011) 6064-6068.
  41. [33] F. O. Lucas, L. O’Reilly, G. Natarajan, P. J. McNally, S. Daniels, D. M. Taylor, S. William, D. C. Cameron, A. L. Bradley, and A. Miltra, J. Cryst. Growth 287 (2006) 112-117.
  42. [35] M. M. Alam, F. O. Lucas, D. Danieluk, A. L. Bradley, S. Daniels, and P. J. McNally, Thin Solid Films 564 (2014) 104-109.
  43. [38] L. O’Reilly, O. F. Lucas, P. J. McNally, A. Reader, G. Natarajan, S. Daniels, D. C. Cameron, A. Mitra, M. Martinez-Rosas, and A. L. Bradley, J. Appl. Phys. 98 (2005) 113512.
  44. [40] R. Levy, L. Mager, P. Gilliot, and B. Honerlage, Phys. Rev. B 44 (1991) 20.
  45. [42] http://eportfolio.lib.ksu.edu.tw/~G970J013/wiki/index.php/CBD
  46. [44] http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/XR/TF-XRD/TF-XRD002.pdf
  47. [45] https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C
  48. [46] https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%A7%A3%E5%B9%B3%E8%A1%A1
  49. [47] Alejandro Martinez-Ruiz, Ma. Guadalupe Moreno, Noboru Takeuchi, Solid State Sciences 5 (2003) 291
  50. [49] L. O’Reilly, O.F. Lucas, P.J. McNally, A. Reader, G. Natarajan, S. Daniels, D.C. Cameron, A. Mitra, M. Martinez-Rosas, A.L. Bradley, J. Appl. Phys. 98 (2005) 113512.
  51. [50] http://www.twword.com/wiki/%E9%B9%BD%E6%95%88%E6%87%89
  52. [52] D. Westphal, A. Goldmann, J. Phys. C: Solid State Phys., 15 (1982) 6661.
  53. [53] http://xpssimplified.com/periodictable.php
  54. [54] https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%A7%A3%E5%B9%B3%E8%A1%A1
  55. [55] http://highscope.ch.ntu.edu.tw/wordpress/?p=41192
  56. [56] http://highscope.ch.ntu.edu.tw/wordpress/?p=4728