英文摘要
|
This research is taking both sodium chloride (NaCl) and copper (II) chloride (CuCl_2) compound as precursor of chloride ions, while CuCl_2 is also taken as precursor of copper ions, and using chemical bath deposition (CBD) to prepare copper (I) chloride (CuCl) films on a copper (Cu) substrate. We prepare CuCl films deposited under different conditions by changing the parameters of the experiment, such as adding concentration, deposition time, hydrochloric acid (HCl) dip, etc. By analyzing their electrical properties, optical properties, phase structure, morphology of the surface, elemental composition and structure layer, we can conduct a systematic comparison to find out the most suitable deposition parameters and researches of their characteristics. Then we compare with the CuCl films prepared by using single CuCl_2 compound as precursor.
First, we study the effect on the CuCl film grown with adding different concentrations of NaCl, and compared with the one grown with not adding NaCl. The light emission characteristics, phase structure, morphology of the surface and elemental composition of prepared films have detailed investigated. We can know from the analysis result that a good-quality CuCl film was achieved by CBD via taking NaCl and CuCl_2 compound as precursor of two kinds of ions source. And we confirmed the quality of the film grown with adding NaCl is better than the one without adding NaCl. We can prove the theory that using NaCl compound to increase chloride ions is successful by this result and we have achieved that improving relative ratio of chloride atoms in CuCl film.
Next, we study the effect on the CuCl film grown with changing the deposition time of the film and HCl dip times. The light emission characteristics, phase structure, morphology of the surface, elemental composition and structure layer of prepared films have detailed investigated. We found the prepared CuCl-covered layer of simples without changing is flat and continuous from the analysis result. The thickness of the film is about 2 microns and about 1 micron thicker than the one without adding NaCl. Its film layer is pure CuCl crystallites and corresponding elemental distribution is uniform. In addition, although the film grown with extending deposition time of the film and increasing HCl dip times is discontinuous CuCl-covered layer (60min-3dipping and 80min-4dipping), its quality is not worse than the one without adding. So the CuCl film prepared by this changing can adjust its structure layer depending on the demand of devices need to fabricate afterwards. We can prove the theory that increasing the thickness of the film to decrease the formation of Cu^+ is successful by this result and also have achieved that improving relative ratio of chloride atoms in CuCl film.
On the other hand, in order to improve the quality of phases of the film, this research also investigated the effect on the CuCl film under different temperature and time of the thermal annealing treatment. The light emission characteristics, phase structure, morphology of the surface, elemental composition and structure layer of prepared films have detailed investigated. We can know from the analysis result that the CuCl films prepared before- and after-annealing are all n-type and find the intensity of light emission, crystalline and contents of chloride on the surface of the film will increase with the temperature increasing (150℃-1hr and 200℃-1hr). And plus, its morphology of the surface also tends to be more flat with temperature and time increasing. We can prove the thermal annealing treatment is helpful to enhance the quality of CuCl film by the analysis results described above. Noticeably, we observed light emission mechanism of exciton and bi-exciton in low temperature photoluminescence (PL) spectra at 5.7K, especially, clearly observed the free exciton related emission at room temperature and this property means the quality of the film is good. The analysis results above have great significance for CuCl used in the fabrication of the diode elements in the future.
Keywords: Sodium chloride (NaCl), copper (II) chloride (CuCl_2), copper (I) chloride (CuCl), chemical bath deposition (CBD), copper (Cu) substrate.
*: The author
**: The advisors
|
参考文献
|
-
[3] S. C. Hung, K. J. Wang, S. M. Lan, T. N. Yang, W. Y. Uen, and G. C. Chi, Phys. Status Solidi A 209 (2012) 1053-1058.
連結:
-
[4] Y. C. Huang, L. W. Weng, W. Y. Uen, S. M. Lan, Z. Y. Li, S.-M. Liao, T. Y. Lin, and T. N. Yang, J. Alloys Compd. 509 (2011) 1980-1983.
連結:
-
[8] Y. C. Huang, Z. Y. Li, H. H. Chen, W. Y. Uen, S. M. Lan, S. M. Liao, Y. H. Huang, C. T. Ku, M. C. Chen, T. N. Yang, and C. C. Chiang, Thin Solid Films 517 (2009) 5537-5542.
連結:
-
[11] Z. Y. Li, C. Y. Lee, D. W. Lin, B. C. Lin, K. C. Shen, C. H. Chiu, P. M. Tu, H. C. Kuo, W. Y. Uen, R. H. Horng, G. C. Chi, and C. Y. Chang, IEEE Journal of Quantum Electronics 50 (2014) 354-363.
連結:
-
[12] C. H. Chiu, C. C. Lin, P. M. Tu, S. C. Huang, C. C. Tu, J. C. Li, Z. Y. Li, and W. Y. Uen, IEEE Journal of Quantum Electronics 48 (2012) 175-181.
連結:
-
[13] Z. Y. Li, W. Y. Uen, M. H. Lo, C. H. Chiu, P. C. Lin, C. T. Hung, T. C. Lu, H. C. Kuo, S. C. Wang, and Y. C. Huang, J. Electrochem. Soc. 156 (2009) 129-133.
連結:
-
[14] Z. Y. Li, S. M. Lan, W. Y. Uen, Y. R. Chen, M. C. Chen, Y. H. Huang, C. T. Ku, S. M. Liao, T. N. Yang, S. C. Wang, and G. C. Chi, J. Vac. Sci. Technol., A 26 (2008) 587-591.
連結:
-
[15] K. J. Chang, S. M. Lahn, Z. J. Xie, J. Y. Chang, W. Y. Uen, T. U. Lu, J. H. Lin, and T. Y. Lin, 306 (2007) 283-287.
連結:
-
[16] W. Y. Uen, Z. Y. Li, S. M. Lan, T. N. Yang, Y. W. Chen, and S. M. Liao, Solid State Electron. 51 (2007) 460-465.
連結:
-
[23] J. Rivera, L. A. Murray, and P. A. Hoss, J. Cryst. Growth 1 (1967) 171-176.
連結:
-
[24] B. Perner, J. Cryst. Growth 6 (1969) 86-90.
連結:
-
[25] T. Inoue, M. Kuriyama, and H. Komatsu, J. Cryst. Growth 112 (1991) 531-538.
連結:
-
[26] T. Goto, T. Takahashi, and M. Ueta, J. Phys. Soc. Jpn. 24 (1968) 314-327.
連結:
-
[27] G.R. Olbright, and N. Peyghamberian, Solid State Commun. 58 (1986) 337-341.
連結:
-
[28] A. Cowley, B. Foy, D. Danilieuk, P. J. McNally, A. L. Bradley, E. McGlynn, and A. N. Danilewsky, Phys. Status Solidi A 206 (2009) 923-926.
連結:
-
[29] L. Q. Phuong, M. Ichimiya, H. Ishihara, and M. Ashida, Phys. Rev. B 86 (2012) 235449.
連結:
-
[32] L. O'Reilly, G. Natarajan, P. J. McNally, S. Daniels, O. F. Lucas, A. Mitra, M. Martinez-Rosas, L. Bradley, A. Reader, and D. Cameron, Proc. SPIE 5825 (2005).
連結:
-
[34] A. Mitra, F. O. Lucas, L. O’Reilly, P. J. McNally, S. Daniels, and G. Natarajan, J. Mater. Sci. - Mater. Electron. 18 (2007) 21-23.
連結:
-
[36] M. Ando, S.I. Uozumi, I. Katayama, M. Ichimiya, M. Ashida, and J. Takeda, Phys. Status Solidi C 9 (2012) 2493-2496.
連結:
-
[37] M. Ando, S.I. Uozumi, I. Katayama, M. Ichimiya, M. Ashida, and J. Takeda, Phys. Status Solidi C 9 (2012) 2493-2496.
連結:
-
[39] T. Inoue, M. Kuriyama, and H. Komatsu, J. Cryst. Growth 112 (1991) 531-538.
連結:
-
[41] Yu-Ting Lin, “Fabrication of cuprous chloride films on copper substrate by chemical bath deposition”, Chung Yuan Christian University Department of Electronic Engineering Master Thesis (2015).
連結:
-
[43] S. A. Rodrigo, “Chemical bath deposition of Zn (S,O) buffer layers and application in Cd-free chalcopyrite-based thin-film solar cells and moduless”, Helmholtz-Zentrum Berlin (2009)
連結:
-
[48] Yu-Ting Lin, “Fabrication of cuprous chloride films on copper substrate by chemical bath deposition”, Chung Yuan Christian University Department of Electronic Engineering Master Thesis (2015).
連結:
-
[51] Gomathi Natarajan, S. Daniels, D. C. Cameron, P. J. McNally, Thin Solid Films, 516 (2008) 5531.
連結:
-
[1] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, Journal of Nanomaterials 2014 (2014) 1-7.
-
[2] L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. N. Yang, C. H. Wu, H. F. Hong, W. Y. Ma, and C. C. Shen, Appl. Surf. Sci. 277 (2013) 1-6.
-
[5] Y. C. Huang, Z. Y. Li, L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. Y. Lin, Y. H. Huang, J. W. Chen, and T. N. Yang, J. Vac. Sci. Technol., A 28 (2010) 1307-1311.
-
[6] Y. C. Huang, Z. Y. Li, L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. Y. Lin, Y. H. Huang, J. W. Chen, T. N. Yang, and C. C. Chiang, J. Vac. Sci. Technol., A 27 (2009) 1260-1265.
-
[7] S. C. Hung, P. J. Huang, C. E. Chan, W. Y. Uen, F. Ren, S. J. Pearton, T. N. Yang, C. C. Chiang, S. M. Lan, and G. C. Chi, Appl. Surf. Sci. 255 (2009) 6809-6813.
-
[9] S. M. Lan, W. Y. Uen, C. E. Chan, K. J. Chang, S. C. Hung, Z. Y. Li, T. N. Yang, C. C. Chiang, P. J. Huang, M. D. Yang, G. C. Chi, and C. Y. Chang, J. Mater. Sci. - Mater. Electron. 20 (2009) 441-445.
-
[10] S. C. Hung, P. J. Huang, C. E. Chan, W. Y. Uen, F. Ren, S. J. Pearton, T. N. Yang, C. C. Chiang, S. M. Lan, and G. C. Chi, Appl. Surf. Sci. 255 (2008) 3016-3018.
-
[17] W. Y. Uen, Z. Y. Li, S. M. Lan, and S. M. Liao, J. Cryst. Growth 280 (2005) 335-340.
-
[18] https://www.webelements.com/compounds/copper/copper_chloride.html
-
[19] https://en.wikipedia.org/wiki/Copper(I)_chloride
-
[20] J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95 (2009) 252105-1-252105-3.
-
[21] M. M. Alam, F. O. Lucas, D. Danieluk, A. L. Bradley, S. Daniels, and P. J. McNally, Thin Solid Films 564 (2014) 104-109.
-
[22] M. Soga, R. Imaizumi, Y. Kondo, and T. Okabe, J. Electrochem. Soc. 114 (1967) 388-390.
-
[30] S. Yoshino, G. Oohata, Y. Shim, H. Ishihara, and K. Mizoguchi, Phys. Rev. B 88 (2013) 205311.
-
[31] K. V. Rajani, F. O. Lucas, S. Daniels, D. Danieluk, A. L. Bradley, A. Cowley, M. M. Alam, and P. J. McNally, Thin Solid Films 519 (2011) 6064-6068.
-
[33] F. O. Lucas, L. O’Reilly, G. Natarajan, P. J. McNally, S. Daniels, D. M. Taylor, S. William, D. C. Cameron, A. L. Bradley, and A. Miltra, J. Cryst. Growth 287 (2006) 112-117.
-
[35] M. M. Alam, F. O. Lucas, D. Danieluk, A. L. Bradley, S. Daniels, and P. J. McNally, Thin Solid Films 564 (2014) 104-109.
-
[38] L. O’Reilly, O. F. Lucas, P. J. McNally, A. Reader, G. Natarajan, S. Daniels, D. C. Cameron, A. Mitra, M. Martinez-Rosas, and A. L. Bradley, J. Appl. Phys. 98 (2005) 113512.
-
[40] R. Levy, L. Mager, P. Gilliot, and B. Honerlage, Phys. Rev. B 44 (1991) 20.
-
[42] http://eportfolio.lib.ksu.edu.tw/~G970J013/wiki/index.php/CBD
-
[44] http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/XR/TF-XRD/TF-XRD002.pdf
-
[45] https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C
-
[46] https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%A7%A3%E5%B9%B3%E8%A1%A1
-
[47] Alejandro Martinez-Ruiz, Ma. Guadalupe Moreno, Noboru Takeuchi, Solid State Sciences 5 (2003) 291
-
[49] L. O’Reilly, O.F. Lucas, P.J. McNally, A. Reader, G. Natarajan, S. Daniels, D.C. Cameron, A. Mitra, M. Martinez-Rosas, A.L. Bradley, J. Appl. Phys. 98 (2005) 113512.
-
[50] http://www.twword.com/wiki/%E9%B9%BD%E6%95%88%E6%87%89
-
[52] D. Westphal, A. Goldmann, J. Phys. C: Solid State Phys., 15 (1982) 6661.
-
[53] http://xpssimplified.com/periodictable.php
-
[54] https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%A7%A3%E5%B9%B3%E8%A1%A1
-
[55] http://highscope.ch.ntu.edu.tw/wordpress/?p=41192
-
[56] http://highscope.ch.ntu.edu.tw/wordpress/?p=4728
|