题名

具側鏈苯胺五聚體之電活性聚醯胺在金屬防腐蝕上之應用研究

并列篇名

Synthesis and Characterization Studies of Electroactive Polyamide Coating Containing Pendant Aniline Pentamer for Anticorrosive Application

DOI

10.6840/cycu201700870

作者

呂國精

关键词

防腐蝕 ; 電活性 ; 聚醯胺 ; 側鏈 ; anticorrosive ; electroactive ; polyamide ; pendant

期刊名称

中原大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

葉瑞銘

内容语文

繁體中文

中文摘要

本碩士論文的研究主軸是利用一系列化學反應製備出具側鏈之電活性聚醯胺,並進一步將其應用在冷軋鋼之金屬防腐蝕塗料研究上。 首先,藉由氧化偶合法製備出具有單邊胺基峰端之電活性苯胺五聚體(Aniline Pentamer),接著藉由有機合成,製備出具有二胺單體之側鏈電活性苯胺五聚體(P-DAM)單體,並利用核磁共振光譜儀(1H-NMR)、傅立葉紅外光譜儀(FTIR)及質譜儀(MS)對所合成的所有單體進行化學結構鑑定,接著將P-DAM與二醯氯進行縮和聚合反應以製備一系列的電活性聚醯胺共聚物(EPA-10, EPA-50),並以FTIR確認聚醯胺的特徵官能基已形成,亦即高分子的聚合反應已經完成。 所合成之電活性聚醯胺之氧化還原能力藉由電化學循環伏安儀呈現,或者藉由紫外光-可見光吸收光譜監測電活性聚醯胺之化學氧化現象,由實驗數顯示: 所導入的側鏈苯胺五聚體的含量越多,則所合成的電活性聚醯胺之氧化還原能力越強。 在電化學防腐蝕塗料的應用研究上,塔伏曲線(Tafel plot)、奈奎斯特曲線(Nyquist plot)及博德曲線(Bode plot)被用來比較所合成電活性聚醯胺材料的性能。 由研究結果顯示: 電活性聚醯胺之金屬抗腐蝕能力比非電活性聚醯胺效果好,其主要原因是由於電活性聚醯胺在冷軋鋼表層形成鈍性金屬氧化層來保護金屬基板。 此外,在電活性聚醯胺共聚物塗料的防腐蝕性能探討方面,發現含越多側鏈苯胺五聚體的電活性聚醯胺塗料在冷軋鋼表面呈現出較佳的金屬防腐蝕能力,主要原因是高分子內的側鏈苯胺五聚體越多時,聚醯胺塗料的電活性越好,可在金屬表面更快速感應產生緻密的鈍性金屬氧化層,以保護下層尚未生鏽的金屬。 所產生的鈍性金屬氧化層(如: Fe2O3或Fe3O4)可藉由拉曼光譜(Raman spectroscopy)來進行組成的確認。

英文摘要

In this dissertation, a series of electroactive co-polyamides containing different feeding ratio of pendant aniline pentamer (AP) were prepared, followed by applied in corrosion protection coating and investigated be a series of standard electrochemical corrosion measurements in saline. First of all, AP was synthesized by oxidative coupling reaction. The P-DAM was synthesized by using AP as reactant. The as-synthesized AP and P-DAM was characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier-Transformation infrared (FTIR) spectroscopy and mass spectroscopy (MS). The as-prepared P-DAM were reacted with acyl chloride and another diamine to prepare a series of electroactive co-polyamides (EPA-10, EPA-50), followed by characterized through FTIR to confirm the characteristic peak of amide group, indicating the completeness of condensation reactions of polyamides. Electroactivity of as-prepared electroactive co-polyamides cast onto the indium tin oxide (ITO) electrode can be identified by electrochemical cyclic voltammetry. Moreover, the chemical oxidation of electroactive co-polyamides was observed by the in-situ monitoring of UV-visible absorption spectroscopy. The studies showed that the electroactive co-polyamides containing higher ratio of pendant AP exhibited higher electroactivity (i.e., electro-catalytic capability). For the corrosion protection coating application, electrochemical measurements, such as Tafel plot, Nyquist and Bode plot, were used to investigate the performance of as-prepared polyamides on cold-rolled steel (CRS) electrodes. First, the electroactive co-polyamide coatings were found to reveal better corrosion protection than that of non-electroactive polyamide coating. This may be attributed to the electro-catalytic property of electroactive co-polyamide coatings , inducing the formation of densely passive metal oxide layers (e.g., Fe2O3 and Fe3O4) to protect the underlying metallic substrate. Moreover, it should be noted that electroactive co-polyamide coatings with higher feeding ratio of pendant AP was found to exhibit better corrosion protection as compared to that of electroactive co-polyamide coatings with lower feeding ratio of pendant AP. This may be related to the electroactive co-polyamide coatings with higher feeding ratio of pendant AP displayed stronger electro-catalytic capability, leading to the formation of more densely passive metal oxide layers. Passive metal oxide layers formed onto the surface of CRS electrode were further identified by the Raman spectroscopy.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. [2] H. Shirakawa, S. Ikeda. Polymer, 2,231 (1971).
    連結:
  2. [3] (a) H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J.Heeger J. Chem. Soc., Chem. Commum., 578 (1977).(b) C. K. Chiang, C.R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Lousi, S. C. Gau, A. G. MacDiarmid, , Phys. Rev Lett., 39,1098 (1977).
    連結:
  3. [7] C. Kittel, Introduction to Solid State Physics, 6th Ed. John Wiley& Sons, Singapore, (1986).
    連結:
  4. [13] L. Langer, Solid State Commun, 26,839 (1978).
    連結:
  5. [14] A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Liq. Cryst.,121,173 (1985).
    連結:
  6. [15] H. R. Allcock, F. W. Lampe in Contemporary Polymer Chemistry, Prentice-Hill〆Englewood Cliffs, NJ (1990).
    連結:
  7. [16] A. G. MacDiarmid, A. J. Epstein. Synth. Met., 65,103 (1994).
    連結:
  8. [17] Surville RD, Jozefowicz M. Electrochim acta;13:1451(1968).
    連結:
  9. [20] A. A. Athawale, B. A. Deore, M. V. Kulkami, Mater. Chem. Phys., 60,262 (1999).
    連結:
  10. [22] M. Leclerc, J. Guay, L. H. Dao, Macromolecules, 22,649 (1989).
    連結:
  11. [24] L. X. Wang, X. B. Jing, F. S. Wang, Synth. Met., 41,745 (1991).
    連結:
  12. [27] D. Macinnes, B.L. Funt, Synth. Met., 25,235 (1988).
    連結:
  13. [28] W. A. Gazotti Jr., R. Faez, M. A. De Paoli, J. Electroanal. Chem., 415,107 (1996).
    連結:
  14. [45] W. Lu, X. Sheng Meng, and Z. Yuan Wang, J. Polym. Sci., Part A: Polym. Chem., 37,4295 (1999).
    連結:
  15. [47] J. Gao, D. G. Liu, J. M. Sansiñena, and H. L. Wang, Adv. Funct. Mater., 14,537 (2004).
    連結:
  16. [48] L. Huang, J. Hu, L. Lang, X. Wang, P. Zhang, X. Jing, X. Wang, X. Chen, P. I. Lelkes, A. G. MacDiarmid, and Y. Wei, Biomaterials, 28,1741 (2007).
    連結:
  17. [49] L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, and X. Jing, Biomacromolecules, 9,850 (2008).
    連結:
  18. [53] E.I. du Pont de Nemours & Co, Brit Pat.,461,236(1937).
    連結:
  19. [71] DeBerry DW. J Electrochem Soc 1985;132:1022.
    連結:
  20. [76] Wessling B. Adv Mater 1994;6:226.
    連結:
  21. [80] 李致緯,藉由導入微量電活性苯胺五聚體側鏈官能基以有效提升聚亞醯胺塗層之金屬防蝕效果之應用研究,私立中原大學化學所碩士論文,2017
    連結:
  22. [82] Chang-Jian Weng, Chi-Hao Chang, Chih-Wei Peng, Shao-Wen Chen, Jui-Ming Yeh, Ching-Ling Hsu and Yen Wei, Chem. Mater. 2011, 23, 2075–2083
    連結:
  23. [84] Yang X, Jiang Y, Zhao T, Yu Y. J Appl Polym Sci 2006;102:222.
    連結:
  24. [86] Macdonald JR. Impedance Spectroscopy, John Wiley & Sons, 1987.137
    連結:
  25. [87] Amirudin A, Thierry D. Prog Org Coat 1995;26:1.
    連結:
  26. [88] Saeb Mousavi, Kyungnam Kang, Jaeho Park and Inkyu Park, RSC Adv., 2016, 6, 104131
    連結:
  27. [89] G.S. Goncalves, A.F. Baldissera, L.F. Rodrigues Jr., E.M.A. Martini, C.A. Ferreira, Synthetic Metals, 2011,161, 313-323
    連結:
  28. [1] D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, Trans Faraday Soc., 294,60 (1964)
  29. [4] A. J. Epstin and A. G. MacDiarmid, Proc. Faraday Soc., Faraday Trans. (1989).
  30. [5] B.Wessling,Synth.Met.,1,119 (1991).
  31. [6] R. Harihanan, Ph. D. Dissertation, Chemistry Department, Drexel University, (1994).
  32. [8] www.nobel.se/chemistry/laureates/2000/chemadv.pdf
  33. [9] W.N.Allen,P.Prant,C.A.Carosella,Synth.Met,1978,1,151.
  34. [10] A. G. MacDiarmid,Synth.Met,1994,103,11665.
  35. [11] 陳鴻宇,導電性聚苯胺/磺酸化聚胺酯混合材料之研究,國立台灣大學化學工程所碩士論文,2001
  36. [12] A. G. Green and A. E. Woodhead, J. Chem. Soc. Trans., 97,2388 (1910).
  37. [18] Venancio EC, Costa CAR, Machado SAS, Motheo AJ.Electrochemistry Communications;3:229(2001).
  38. [19] M. Wan, J. Yang., Synth. Met., 73,201 (1995).
  39. [21] R.J. Martimer, J. Mater. Chem., 5,696 (1995).
  40. [23] Y. Wei, W. W. Focke, G. E. Wuck, A.R. and A.G. MacDiarmid, J. Phys. Chem., 93,49 (1989).
  41. [25] F. A. Viva, E. M. Andrade, F. V. Molina, M. I. Florit, J. Electroanal. Chem., 471,180 (1999).
  42. [26] W. A. Gazotti Jr., M. J. D. M. Jannini, S. I. Córdoba de Torresi, M. A. De Paoli, J. Electroanal. Chem.,440,193 (1997).
  43. [29] J. F. Pennean, M. Lapkowski, E. M. Genies, New J. Chem., 13,533 (1989).
  44. [30] J. C. Lacroix, P. Garcia, J. P. Audiere, R. Clement, O. Kahn, Synth. Met., 44,117 (1991).
  45. [31] Wei Y, Yu YH, Zhang WJ, Wang C, Jia XR, Susan AJ,Chinese Journal of Polymer Science,2002,20,105-118
  46. [32] F. L. Lu, F. Wudl, M. Nowak, and A. J. Heeger, J. Am. Chem. Soc., 108,8311 (1986).
  47. [33] F. Wudl, R. O. Angus, F. L. Lu, P. M. Allemand, D. Vachon, M. Nowak, Z. X. Liu, H. Schaffer, and A. J.Heer, J. Am. Chem. Soc., 109,3677 (1987).
  48. [34] Y. Wei, C. Yang, and T. Ding, Tetrahedron Lett., 37,731 (1996).
  49. [35] L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, and Y. Wei, Mater. Lett., 59,2446 (2005).
  50. [36] L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, and Y. Wei, Synth. Met., 149,129 (2005).
  51. [37] R. A. Singer, J. P. Sadighi, and S. L. Buchwald, J. Am. Chem. Soc., 120,213 (1998).
  52. [38] J. P. Sadighi, R. A. Singer, and S. L. Buchwald, J. Am. Chem. Soc., 120,4960 (1998).
  53. [39] R. Chen and B. C. Benicewicz, Synth. Met., 146,133 (2004).
  54. [40] D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, and Y. Wei, J. Appl. Polym. Sci., 104,1603 (2007).
  55. [41] D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, and Y. Wei, Macromol. Chem. Phys., 208,658 (2007).
  56. [42] D. Chao, X. Lu, J. Chen, X. Zhao, L. Wang, W. Zhang, and Y. Wei, J. Polym. Sci., Part A: Polym. Chem.,44,477 (2006).
  57. [43] D. Chao, X. Lu, J. Chen, X. Liu, W. Zhang, and Y. Wei, Polymer, 47,2643 (2006).
  58. [44] Z. Y. Wang, C. Yang, J. P. Gao, J. Lin, X. S. Meng, Y. Wei, and S. Li, Macromolecules, 31,2702 (1998).
  59. [46] R. Chen and B. C. Benicewicz, Macromolecules, 36,6333 (2003).
  60. [50] D. Chao, J. Zhang, X. Liu, X. Lu, C. Wang, W. Zhang, and Y. Wei, Polymer, 51,4518 (2010).
  61. [51] D. Chao, X. Jia, H. Liu, L. He, L. Cui, C. Wang, and E. B. Berda, J. Polym. Sci., Part A: Polym. Chem., 49,1605 (2011).
  62. [52] Kricheldorf HR. Handbook of Polymer Synthesis, Marcel Dekker1991.
  63. [54] 廖建源,標準與檢驗雜誌,1999;8:8.
  64. [55] 陳文斌,新型複合金屬粉末防蝕塗料,國立成功大學材料科學及工程學系碩士論文,2001.
  65. [56] Yeh JM, Liou SJ, Lin CY, Cheng CY, Chang YW, Lee KR. Chem Mater 2002;14:154.
  66. [57] Yeh JM, Liou SJ, Lai MC, Chang YW, Huang CY, Chen CP, Jaw JH, Tsai TY, Yu YH. J Appl Polym Sci 2004;94:1936.
  67. [58] Yeh JM, Liou SJ, Lin CG, Chang YP, Yu YH, Cheng CF. J Appl Polym Sci 2004;92:1970.
  68. [59] Yeh JM, Chen CL, Chen YC, Ma CY, Huang HY, Yu YH. J Appl Polym Sci 2004;92:631.
  69. [60] Yeh JM, Huang HY, Chen CL, Su WF, Yu YH. Surf Coat Technol 2006;200:2753.
  70. [61] Yeh JM, Chen CL, Kuo TH, Su WF, Huang HY, Liaw DJ, Lu HY, Liu CF, Yu YH. J Appl Polym Sci 2004;92:1072.
  71. [62] Yu YH, Yeh JM, Liou SJ, Chen CL, Liaw DJ, Lu HY. J Appl Polym Sci 2004;92:3573.
  72. [63] Yeh JM, Hsieh CF, Jaw JH, Kuo TH, Huang HY, Lin CL, Hsu MY. J Appl Polym Sci 2005;95:1082.
  73. [64] Yu YH, Yeh JM, Liou SJ, Chang YP. Acta Mater 2004;52:475.
  74. [65] Yeh JM, Liou SJ, Lai CY, Wu PC, Tsai TY. Chem Mater 2001;13:1131.
  75. [66] Yeh JM, Chen CL, Chen YC, Ma CY, Lee KR, Wei Y, Li S. Polymer 2002;43:2729.
  76. [67] Yeh JM, Chin CP. J Appl Polym Sci 2003;88:1072.
  77. [68] Chang KC, Lai MC, Peng CW, Chen YT, Yeh JM, Lin CL, Yang JC. Electrochim Acta 2006;51:5645.
  78. [69] Yu YH, Jen CC, Huang HY, Wu PC, Huang CC. Yeh JM. J Appl Polym Sci 2004;91:3438.
  79. [70] Yeh JM, Chin CP, Chang S. J Appl Polym Sci 2003;88:3264.
  80. [72] Wei Y, Wang J, Jia X, Yeh JM. P Spellane Polymer 1995;36:4535.
  81. [73] McAndrew TP, Miller SA, Gilicinski AG, Robeson LM. Polym Mater Sci Eng 1996;74:204.
  82. [74] Vishwanatham S. Emranuzzaman India J Chem Technol 1998;5:246.
  83. [75] Lu WK, Elsenbaumer RL, Wessling B. Synth Met 1995;69-71:2163.
  84. [77] Talo A, Passiniemi P, Forsen O, Ylasaari S. Synth Met 1997;85:1333.
  85. [78] Spinks GM, Dominis AJ, Wallace GG, Tallman DE. J Solid State Electrochem 2002,6,85.
  86. [79] Yeh JM, Huang TC, Yeh TC, Huang HY, Ji WF, Lin TC, Chen CA, Yang TI,Electrochimica Acta,2012 ,63,185–191
  87. [81] L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, Y. Wei, Material letters, 2005,59, 2446-2450
  88. [83] Sathiyanarayanan S, Dhswan SK, Trivedi DC, Balakerishnan K.Corros Sci 1992;33:1831.
  89. [85] Application Note AC-3, Princeton Applied Research, NJ, USA.