题名

孔洞性鋯金屬有機骨架的合成與氣體吸附研究

并列篇名

Synthesis and Gas Adsorption of Porous Zirconium Metal-Organic Framework

DOI

10.6840/cycu201700659

作者

周佳賢

关键词

鋯金屬 ; 金屬有機骨架:鋯金屬有機骨架 ; Zr-MOFs

期刊名称

中原大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

林嘉和

内容语文

繁體中文

中文摘要

在本論文中,以過渡金屬四氯化鋯和有機配位基 4,4'-((1E,1'E)- hydrazine-1,2-iylidenebis(methanylylidene)) dibenzoic acid (H2DMDA)、添加劑苯甲酸及溶劑二甲基甲醯胺和水,以水熱及一般加熱兩種不同合成方法產生之孔洞性金屬有機骨架進行探討。 測試條件如下: 1.水熱合成方法中以調整金屬比例找出最佳M/L比例(配位基及添加劑固定量)。 2.水熱合成方法中以最佳M/L比例調整添加劑比例找出最佳M/L/A比例(金屬及配位基固定量)。 3.一般加熱合成方法以最佳M/L比例調整添加劑比例找出最佳M/L/A比例(金屬及配位基固定量)。 在化合物鑑定以粉末X光繞射儀來鑑定化合物結構、以掃描式電子顯微鏡觀察表面外觀,以表面積及孔徑分布儀來分析孔徑特性與氮氣的吸附量。其中Z12化合物(金屬:配位基:添加劑 = 1:3:19) ,在77K氮氣吸附量為 862 cm3/g ,BET比表面積為3978 m2/g,Langmuir比表面積為3969 m2/g。 Karl Peter Lillerud et. al. 研究團隊所發表的UiO-66、67、68以Langmuir計算比表面積分別為1187、3000和4170 m2/g,與其相比本篇論文Z12可用較低的成本合成達到3000 m2/g以上的高比表面積孔洞材料,對於未來研究或各方面的應用都具有很好的發展性。

英文摘要

In this thesis , we have synthesized a new zirconium metal-organic frameworks (Zr-MOFs) using zirconium tetrachloride (transition metal) and 4,4 '- ((1E, 1'E) -hydrazine-1,2-iylidenebis (methanylylidene)) dibenzoic acid (H2DMDA) ( organic coordination )、benzoric acid (additive) 、dimethylformamide (solvent) and water synthesized by hydrothermal method and heating method. The experiment process as follows: 1.Adjust the proportion of metal to find the best Metal / Ligand ratio by hydrothermal method. (The ligand and additive use fixed amount) 2.Adjust the proportion of additive to find the best Metal / Ligand/ additive ratio by hydrothermal method. (The metal and ligand use fixed amount) 3.Adjust the proportion of additive to find the best Metal / Ligand/ additive ratio by heating method (The metal and ligand use fixed amount) The new MOFs were structurally characterized by powder X-ray diffraction (PXRD). The shape and particle size of the new MOFs were identified by field emission scanning electron microscope (FESEM). Further characterization for MOFs were done with gas sorption .The Z12 has the highest N2 gas uptake to 862 cm3/g at 77K , BET suface area is 3978 m2/g,Langmuir suface area is 3969 m2/g。 Karl Peter Lillerud et al. Published by the research team UiO-66,67,68 calculated by Langmuir surface area of 1187, 3000 and 4170 m2/ g, compared Z12 can be used at low cost and reaching more than 3000 m2/ g high surface area of the hole material, for future research or all aspects of the application has a very good development

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 1.Telfer, S.G.,Chemistry in New Zealand, 2010, January, 9-14.
    連結:
  2. 9.Vallet-Regi, M.; Balas, F.; Arcos, D., Angewandte Chemie - International Edition, 2007, 40, 7548-7558.
    連結:
  3. 15.Wang, Z.; Cohen, S. M., Chem. Soc. Rev., 2009, 38, 1315-1329
    連結:
  4. 25.Peterson, G.W.; DeCoste, J.B.; Glover T.G.; Huang, Y.;Jasuja, H.; Walton, K.S., Microporous and Mesoporous Materials, 2013, 48-53.
    連結:
  5. 28.Langmuir, I., J. Am. Chem. Soc., 1918, 40, 1361–1403.
    連結:
  6. 2.Tian, H.; Fan, H.; Li, M.; Ma, L., ACS Sens., 2016, 1, 243-250.
  7. 3.Dybtsev, D. N.; Chun, H.; Yoon S. H.; Kim, D.; Kim, K., J Am Chem Soc, 2004, 126, 32-33.
  8. 4.Yaghi, O. M.; O’Keeffe, M.; Ockwing, N. M.; Chae, H. K.; Eddaoudi, M. and Kim, J., Nature. 2003, 423, 705-714.
  9. 5.Venna, S. R.; Carreon, M. A., Chemical Engineering Science. 2014, 174.
  10. 6.Cirujano, F. G.; Llabresi Xamena, F. X.; Corma, A., Dalton Transactions, 2012, 41, 4249-4254.
  11. 7.Fazaeli, R.; Aliyan, H.; Moghadam, M,;Masoudinia, M., J Mol Catal A Chem, 2013, 374-375, 46-52.
  12. 8.Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, F., J. Am. Chem. Soc., 2008, 130, 6774-6780.
  13. 10.Fillippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E. D.;Vandichel, M.; Nanaki, S. G.; Vizirianakis, I.S.; Bikiaris, D. N.; Voort, P. V. D.; Tendeloo, G. V., International Journal of Pharmaceutics, 2016, 509, 208-218.
  14. 11.Xuan, Z.-H.; Zhang, D.-S.; Chang, Z.; Hu, T.-L.; Bu, X.-H., Inorg. Chem., 2014, 53, 8985-8990.
  15. 12.Gao, J.; Miao, J.; Li, P.-Z.; Teng, W. Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q., Chem. Commun., 2014, 50, 3786-3788.
  16. 13.Ricco, R.; Malfatti, L.; Takahashi, M.; Hill, A. J.; Falcaro, P. J., Mater. Chem. A., 2013, 1, 13033-13045.
  17. 14.Li, B.; Wen, H.M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B.,Adv. Mater., 2016, 8819-8860.
  18. 16.Zhang, Z.; Hoang Nguyen, H. T.; Miller, S. A.; Cohen, S. M.; Angewandte Chemie International, 2015, 54, 6152-6157.
  19. 17.Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Zhao, D.; Yan, Y., Microporous Mesoporous Mater, 2003, 58, 105-114.
  20. 18.Ni. Z.; Masel, R. I., J. Am. Chem. Soc. 2006, 128, 12394-1295.
  21. 19.Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Chem. Commun. 2008, 3639-3641.
  22. 20.Ye, B.H.; Tong, M.L.; Chen, X.M., Coordination Chemistry Reviews, 2005, 249, 545–565.
  23. 21.Rojas, S.; Carmona, F.J.; Maldonado, C.R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J.A.R.; Barea, E., Inorg. Chem., 2016, 55, 2650-2663.
  24. 22.Katz, M.J.; Brown, Z.J.; Colon, Y. J.; Siu, p.w.; Scheidt, K.A.;Snurr, R.Q.; Hupp, J.T.; Farha, O.K.,Chem. Commun., 2013, 49, 9449-9451.
  25. 23.Pinto, M.L.; Dias, S.; Pires, J., ACS Appl. Mater. Interfaces, 2013, 5, 2360−2363.
  26. 24.Bennett, T.D.; Todorova, T.K.; Baxter, E.F.; Reid, C.G.; Bueken, B.; Voorde, B.V.; Vos, D.D.; Keen, D.A.; Mellot-Draznoeks, C., Phys. Chem. Chem. Phys., 2016, 18, 2192-2201.
  27. 26.Wu, D.; Maurin, G.; Yang, Q.; Serre, C.; Jobic, H.;Zhong, C., J. Mater. Chem. A, 2014, 2, 1657–1661.
  28. 27.Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, R.; Lillerud, K.P., J. AM. CHEM. SOC., 2008, 131, 1350-13851.
  29. 29.Brunauer, S.; Emmett, P.H.; Teller, E., J. Am. Chem. Soc., 1938, 60, 309-319.
  30. 30.Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Chem. Eur. J., 2011, 17, 6643–6651.