英文摘要
|
Classical test theory has the problem of sample dependence, so item response theory(IRT) is used to cope with this issue, which is an important ingredient in modern test theory. It includes one-parameter model, two-parameter model, three-parameter model, and partial credit model and rating scale model with polytomous scoring.
In this paper, both of the polytomous IRT models, partial credit model and rating scale model, are used to analyze the data from the first Joint Calculus Examination held in the fall semester 2016 in Chung Yuan Christian University. In general, because we are not assuming independence between the each of the individual parameters this integral is difficult to compute, especially if there are many parameters. This is the situation in which Monte Carlo Markov chain(MCMC) simulation is most commonly used. There are 1523 students in this examination, and these items are polytomous scoring data.
Partial credit model and rating scale model are the extensions of the binary scoring of the one parameter model. The former estimates the threshold difficulty parameters which represent the difficulty between each category. The latter estimates the item difficulty parameters which represent the difficulty between each item. After that, we will discuss the relationship of difficulty.
|
参考文献
|
-
1. Agresti, A. (2002). Categorical data analysis, 2nd ed. John Wiley & Sons,Inc.
連結:
-
3. Gelman, S.,Geman, D. (1984). Stochastic Relaxation , Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.PAMI-6,No.6,p721-741.
連結:
-
4. Gelfand, A.E.,Smith, A.F.M. (1990). Sampling-Based Approaches to Calculating Marginal Densities.Journal of the American Statistical Association, Vol.85,No.410,p398-409.
連結:
-
5. Hastings, W.K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications.Biometrika,Vol.57,No.1,p97-109.
連結:
-
6. Metropolis, N.,Rosenbluth, A.W.,Rosenbluth, M.N.,Teller, A.H.,and Teller, E. (1953). Equation of State Calculations by Fast Computing Machines.Journal of Chemical Physics,21:p1087-1091
連結:
-
7. Metropolis, N.,Ulam, S. (1949). The Monte Carlo Method.Journal of the American Statistical Association,Vol.44,No.247,p335-341.
連結:
-
8. Masters,Geoff N. (1982). A Rasch Model for Partial Credit Scoring.Psychometrika, Vol.47,NO.2,p149-174.
連結:
-
9. Mair, P.,Hatzinger, R. (2007). Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R.Journal of Statistical Software, Vol.20,NO.9,p1-20.
連結:
-
12. Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions.The Annals of Statistics, Vol.22,No.4,p1701-1762.
連結:
-
16. 王佳琪(2010)。以Rasch 模式檢驗中文版多向度幽默感量表之信效度。國立中山大學教育研究所碩士論文。
連結:
-
2. Gelman, A.,Carlin, J.B.,Stern, H.S.,Vehtari, A.,Dunson, D.B., and Rubin, D.B. (2004). Bayesian Data Analysis, 3rd ed. Chapman & Hall/CRC.
-
10. Press, S.J. (2003). Subjuctive and Objective Bayesian Statistics : Principles,Models , Applications , 2nd ed. John Wiley & Sons,Inc.
-
11. Ross, S.M. (2014). Introduction to probability models [electronic resource],11th ed. Academic Press: An Elsevier Science Imprint.
-
13. Verhelst, N.D.,Verstralen, H.H.F.M. (2008). Some Considerations on the Partial Credit Model.Psicologica,29:p229-254.
-
14. 王文中(2004)。Rasch 測量理論與其在教育和心理之應用。教育與心理研究,27 卷,4 期,637-694。
-
15. 卓元鼎(2010)。可靠度改善實驗的貝氏方法。東海大學統計研究所碩士論文。
|