题名

PVT控制技術建置與應用於射出成型品質控制之研究

并列篇名

Investigation on the establishment of PVT control method and its application to injection molded part quality

DOI

10.6840/cycu201700135

作者

張詠翔

关键词

動態PVT品質控制 ; 射出成型品質控制 ; 紅外線溫度感測器 ; 射出成型穩定性 ; Dynamic PVT control method ; injection molded part quality control ; injection molding stability ; infrared temperature sensor

期刊名称

中原大學機械工程學系學位論文

卷期/出版年月

2017年

学位类别

博士

导师

陳夏宗

内容语文

繁體中文

中文摘要

壓力-比容-溫度(PVT)關係為高分子相當重要的特性,其隨著成型的溫度或壓力變動比容也會有所改變,尤其整個射出成型的週期中高分子熔膠之變化難以預測,導致產品品質與精度難以掌控。以往需靠有經驗的人工做參數調整,未有一科學化的調整基準,使得良率維持上相當困難,如何建立一成型技術以科學化的試模與成型穩定監控則是開發的重要關鍵。本研究以紅外線溫度感測器與壓力感測器建立模穴實際PVT歷程監測技術,針對射出成型過程做熔膠充填的數據監視。另一方面,透過此PVT數據做基礎參數於品質控制性研究,探討不同參數下PVT歷程與品質控制性的關係。最後則使用此技術討論不同控制法的品質控制與連續射出成型穩定性,以現有監測技術與本研究所建立之技術做品質重複精度討論。希望透過此監控技術達到品質控制之目的,同時也可改善連續生產之產品變異的問題。 研究結果顯示,PVT監測技術成功取得成型時的PVT歷程,且數據相當穩定。在基礎參數對品質控制性則說明了不同參數設定對於PVT歷程有不同影響,PVT歷程對產品品質也有直接相關。充填過程中會產生剪切熱並於PVT歷程中顯示,其不同溫度與充填時間將影響剪切升熱的程度。動態PVT品質控制法可有效改善產品品質結果,其產品精度可提升超過40%,其他品質也有不同程度的改善。最後在連續射出成型穩定性方面,PVT監控技術可有效提升品質精度,其重量重複精度提升54%、收縮重複精度提升23%、翹曲重複精度提升12%。此監控技術之應用可提供一科學化的參數調整依據,並且不僅可優化產品品質狀況更進一步的穩定連續射出成型之品質重複精度,對於傳統射出成型所面臨的問題提出一有效的解決方案。

英文摘要

PVT relation is one of important properties for polymer processing which is affected by temperature and pressure changes. Due to the unpredictable property, it is difficult to produce with constant quality during consecutive molding process. Traditionally, the qualities of injection molded part rely on experienced operator for adjusting molding parameters; however, those parameter modifying processes are without scientific theory and standard procedure. It becomes an essential research issue for now on. This study based on the PVT theory created a practical PVT monitoring technology by using infrared temperature sensor with pressure sensor set in the mold. With those two practical data, PVT course can be described. Consequently, PVT monitoring technology was utilized to investigate the influence of molding parameters to the controllability of product quality, optimizing product quality, and molding stability. The result shows that the PVT curves are constant under consecutive molding cycle. PVT, at the same time, reveals that the influence between molding parameters and quality controllability. Specific volume is directly related to product quality such as shrinkage, weight, warpage, and tensile strength. Shear heating was observed by PVT curves under different temperature setting and filling times. On the other hand, four control methods for optimizing product qualities were investigated. Dynamic PVT control method can mold a part with smallest total shrinkage, heaviest weight, less warpage, and greater strength. For molding stability, PVT control method can constant molded quality not only on product weight but also on shrinkage and warpage. The method resulted in 54% shrinkage repeatability precision up to the traditional producing process, 23% in weight repeatability precision, and 12% in warpage repeatability.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. 8. Berry, J.M.; Brostow, W.M.; Hess, M. & Jacobs, E.G. (1998). P-V-T relations in a series of longitudinal polymer liquid crystals with varying mesogen concentration. Polymer, Vol. 39, No. 17, (August 1998), pp. 4081-4088. ISSN 0032-3861
    連結:
  2. 9. He, J. & Zoller, P. (1994). Crystallization of polypropylene, nylon-66 and poly(ethylene terephthalate) at pressures to 200 MPa: kinetics and characterization of products, Journal of Polymer Science Part B: Polymer Physics, Vol. 32, No. 6, pp. 1049-1067. ISSN 0887-6266
    連結:
  3. 11. Quach, A. & Simha, R. (1971). Pressure-volume-temperature properties and transitions of amorphous polymers; polystyrene and poly (orthomethylstyrenes). Journal of Applied Physics, Vol. 42, No. 12, (November 1971), pp. 4592-4606. ISSN 0021-8979
    連結:
  4. 12. Zoller, P.; Bolli, P.; Pahud, V. & Ackermann, H. (1976). Apparatus for measuring pressure– volume–temperature relationships of polymers to 350 °C and 2200 kg/cm2. Review of Scientific Instruments, Vol. 47, No. 8, (August 1976), pp. 948-952. ISSN 0034-6748
    連結:
  5. 13. Zoller, P. & Fakhreddine, Y.A. (1994). Pressure-volume-temperature studies of semicrystalline polymers. Thermochimica Acta, Vol. 238, (June 1994), pp. 397-415. ISSN 0040-6031
    連結:
  6. 14. Barlow, J.W. (1978). Measurement of the P-V-T behavior of cis-1,4-polybutadiene, Polymer Engineering and Science, Vol. 18, No. 3, (February 1978), pp. 238-245. ISSN 0032-3888
    連結:
  7. 15. Sato, Y.; Yamasaki, Y.; Takishima, S. & Masuoka, H. (1997). Precise measurement of the P-V- T of polypropylene and polycarbonate up to 330 °C and 200 MPa, Journal of Applied Polymer Science, Vol. 66, No. 1, (October 1997), pp. 141-150. ISSN 0021-8995
    連結:
  8. 16. Menges, G. & Thienel, P. (1977). Pressure-specific volume-temperature behavior of thermoplastics under normal processing conditions, Polymer Engineering and Science, Vol. 17, No. 10, (October 1977), pp. 758-763. ISSN 0032-3888
    連結:
  9. 17. Piccarolo, S. (1992). Morphological changes in isotactic polypropylene as a function of cooling rate. Journal of Macromolecular Science - Physics, Vol. 31, No. 4, (1992), pp. 501-511. ISSN 0022-2348
    連結:
  10. 19. Imamura, S.; Mori, Y.; Kaneta, T.; Kushima, K. & Kobunshi, R. (1996). Influence of accuracy of P-V-T measurement on the simulation of the injection molding process, Japanese Journal of Polymer Science and Technology, Vol. 53, (1996), pp. 693-699. ISSN 0023- 2556
    連結:
  11. 22. Chakravorty, S. (2002). P-V-T Testing of Polymers under industrial processing conditions. Polymer Testing, Vol. 21, No. 3, (2002), pp. 313-317. ISSN 0142-9418

    連結:
  12. 23. Luyé, J.F.; Régnier, G.; Le, B.P.; Delaunay, D. & Fulchiron, R. (2001). P-V-T measurement methodology for semicrystalline polymers to simulate injection molding process, Journal of Applied Polymer Science, Vol. 79, No. 2, (January 2001), pp. 302-311. ISSN 0021-8995
    連結:
  13. 24. van der Beek, M.H.E.; Peters, G.W.M. & Meijer, H.E.H. (2005). A dilatometer to measure the influence of cooling rate and melt shearing on specific volume. International Polymer Processing, Vol. XX, No. 2 (2005) 111-120. ISSN 0930-777X
    連結:
  14. 25. van der Beek, M.H.E.; Peters, G.W.M. & Meijer, H.E.H. (2005). The influence of cooling rate on the specific volume of isotactic poly (propylene) at elevated pressures, Macromolecular Materials and Engineering, Vol. 290, No. 5, (May 2005), pp. 443- 455. ISSN 1438-7492
    連結:
  15. 26. Nunn, R.E. (1989). Adaptive process control for injection molding, U.S. Patent 4850217, July 1989.
    連結:
  16. 27. Chiu, C.P.; Liu, K.A. & Wei, J.H. (1995). A method for measuring P-V-T relationships of thermoplastics using an injection molding machine, Polymer Engineering and Science, Vol. 35, No.19, (October 1995), pp. 1505-1510. ISSN 0032-3888

    連結:
  17. 28. Park, C.B.; Park, S.S.; Ladin, D. & Naguib, H.E. (2004). On-line measurement of the P-V-T properties of polymer melts using a gear pump, Advances in Polymer Technology, Vol. 23, No. 4, (Winter 2004), pp. 316-327. ISSN 0730-6679
    連結:
  18. 29. Wang, J.; Xie, P.; Ding, Y. & Yang, W. (2009). On-line testing equipment of P–V–T properties of polymers based on an injection molding machine. Polymer Testing, Vol. 28, No. 3, (May 2009), pp. 228-234. ISSN 0142-9418
    連結:
  19. 30. Wang, J.; Xie, P.; Ding, Y. & Yang, W. (2010). Online pressure–volume–temperature measurements of polypropylene using a testing mold to simulate the injection- molding process. Journal of Applied Polymer Science, Vol. 118, No. 1, (October 2010), pp. 200-208. ISSN 0021-8995
    連結:
  20. 33. Huang, M.S. (2007). Cavity pressure based grey prediction of the filling-to-packing switchover point for injection molding. Journal of Materials Proccessing Technology, Vol. 183, No. 2-3, (March 2007), pp. 419-424. ISSN 0924-0136

    連結:
  21. 36. Kazmer, D.; Velusamy, S.; Westerdale, S.; Johnston, S. & Gao, R. (2010). A comparison of seven filling to packing switchover methods for injection molding. Polymer Engineering and Science, Vol. 50, No. 10, (October 2010), pp. 2031-2043. ISSN 0032- 3888
    連結:
  22. 37. Wang, J.; Peng, J. & Yang, W. (2011). Filling-to-packing switchover mode base on cavity temperature for injection molding. Polymer-Plastics Technology, Vol. 50, No. 12, (August 2011), pp. 1273-1280. ISSN 0360-2559
    連結:
  23. 38. Wang, J., Xie, P., Ding, Y. & Yang, W. (2010). Study on the end-point control of holding phase during injection molding. Advanced Material Research, Vol. 87-88, (2010), pp. 222-227. ISSN 1662-8985
    連結:
  24. 39. Gao, F.; Patterson, W.I. & Kamal, M.R. (1996). Cavity pressure dynamics and self-tuning control for filling and packing phases of thermoplastics injection molding. Polymer Engineering and Science, Vol. 36, No. 9, (May 1996), pp. 1272-1285. ISSN 0032-3888
    連結:
  25. 40. Čatić, I. (1979). Cavity temperature—an important parameter in the injection molding process. Polymer Engineering and Science, Vol.19, No. 13, (October 1979), pp. 893-899. ISSN 0032-3888

    連結:
  26. 46. Kamal, M.R.; Varela, A.E. & Patterson, W.I. (1999). Control of part weight in injection molding of amorphous thermoplastics. Polymer Engineering and Science, Vol. 39, No. 5, (May 1999), pp. 940-952. ISSN 0032-3888
    連結:
  27. 49. Michaeli, W. & Schreiber, A. (2009). Online control of the injection molding process based on process variables. Advances in Polymer Technology, Vol. 28, No. 2, (Summer 2009), pp. 65-76. ISSN 0730-6679
    連結:
  28. 53. Speranza V, Vietri U, Pantani R (2011) Monitoring of injection molding of thermoplastics: average solidification pressure as a key parameter for quality control. Macromol Res 19(6):542–554. doi:10.1007/s13233-011-0610-9
    連結:
  29. 54. Zhang J, Alexander SM (2008) Fault diagnosis in injection mould- ing via cavity pressure signals. Int J Prod Res 46(22):6499–6512. doi:10.1080/00207540701429918 

    連結:
  30. 55. Zhang Y, Mao T, Huang Z, Gao H, Li D (2015) A statistical quality monitoring method for plastic injection molding using machine built-in sensors, Int J Adv Manuf Technol, doi:10.1007/s00170-015-8013-2
    連結:
  31. 56. 鍾志鴻,射出成型合理化參數評估系統-充填模組建立,中原大學,2010,碩士論文
    連結:
  32. 57. 尤婷儀,實用型成型導引智能化射出機合理化成型模組之應用與開發, 中原大學,2011,碩士論文
    連結:
  33. 58. 林志展,線上黏度監測應用射出成型製程,中原大學,2013,碩士論文
    連結:
  34. 60. Wang J, Mao Q (2012) Methodology based on the PVT behavior of polymer for injection molding, Advances in Polymer Technology, Vol.32, No. S1, E474-E485
    連結:
  35. 66. D. C. Hylton, Understanding Plastics Testing, Munich: Carl Hanser Verlag, 2004
    連結:
  36. 74. Chen S, Liaw W, Su P, Chung M. Investigation of molding separation in thin wall injection molding. Advances in Polymer Technology, 2003, 22(4): 306-319.
    連結:
  37. 參考文獻
  38. 1. McKinsey & Company, “Industry 4.0 after the initial hype Where manufacturers are finding value and how they can best capture it”, 2016 (Industry 4.0 after the initial hype where manufacturers are finding value and how they can best capture it, 2016)
  39. 2. http://www.bnext.com.tw/article/view/id/34549
  40. 3. https://en.wikipedia.org/wiki/Big_data
  41. 4. http://www.managertoday.com.tw/articles/view/52306
  42. 5. 侯貫智 (2010),模具產業漸露復甦曙光,中華民國全國工業總會 

  43. 6. 張建一 (2015),我國勞動生產力演變及勞動人口趨勢之探討,台灣經濟研究院
  44. 7. Zoller, P. & Walsh, D.J. (1995). Standard pressure–volume–temperature data for polymers. Technomic Publishing Company. Inc., ISBN 97815667663288, U.S.A., Lancaster
  45. 10. http://www.moldex3d.com/ch/products/agent/pvt-6000-polymer-pvt-tester
  46. 18. Bhatt, S.M. & McCarthy, S.P. (1994). Pressure volume and temperature (P-V-T) apparatus for computer simulations in injection molding, Society of Plastics Engineers Annual Technical Conference, ISBN 9995283220, 9789995283223, San Francisco, May 1994, pp. 1831-1832.
  47. 20. Lobo, H. (1997). New approaches for PVT measurements, Toronto meeting of the CAMPUS/ISO, 1997, Toronto, Canada.
  48. 21. Brown, C. & Hobbs, C. (1998). Pressure-Volume-Temperature behaviour of polymers during rapid cooling. NPL Measurement Notes: CMMT (MN) 033, November 1998.

  49. 31. Jian Wang (2012). PVT Properties of Polymers for Injection Molding, Some Critical Issues for Injection Molding, Dr. Jian Wang (Ed.), ISBN: 978-953-51-0297-7, InTech
  50. 32. Johannaber, F. (1994). Injection molding machines: a user’s guide (4th edition), Hanser Gardner Publications, ISBN 1569901694,Western Europe
  51. 34. Chang, T.C. (2002). Robust process control in injection molding – process capability comparison for five switchover modes. Journal of Injection Molding Technology, Vol. 6, No. 4, (December 2002), pp. 239-246. ISSN 1533-905X

  52. 35. Edwards, R.; Diao, L. & Thomas C.L. (2003). A comparison of position, cavity pressure, and ultrasound sensors for switch/over control in injection molding. Society of Plastics Engineers Annual Technical Conference, ISBN , Nashville, USA, May 2003, pp. 586- 590.
  53. 41. Menges, G. (1974). Findings for normal operations from studies into process control. Plastverarbeiter, Vol. 25, No. 5, (1974), pp. 265-274. ISSN 0032-1338
  54. 42. Manero, F. (1996). Cavity temperature and control in thermoplastics injection moulding. 1996, Master’s Thesis, McGill University
  55. 43. Yakemoto, K.; Sakai, T.; Maekawa, Z. & Hamada, H. (1993). Adaptive holding pressure control based on the prediction of polymer temperature in a mold cavity. Society of Plastics Engineers Annual Technical Conference, ISBN 9993108979, 9789993108979, New Orleans, USA, May 1993, pp. 2192-2202.
  56. 44. Sheth, H.R. & Nunn, R.E. (1998). An adaptive control methodology for the injection molding process. Part 1: Material data generation. Journal of Injection Molding Technology, Vol. 2, No. 2, (June 1998), pp. 86-94. ISSN 1533-905X
  57. 45. Sheth, H.R. & Nunn, R.E. (2001). An adaptive control methodology for the injection molding process. Part 2: Experimental application. Journal of Injection Molding Technology, Vol. 5, No. 3, (September 2001), pp. 141-151. ISSN 1533-905X
  58. 47. http://3g.autooo.net/classid77-id102923.html
  59. 48. Michaeli, W. & Gruber, J. (2004). Increasing quality by online control of the cavity pressure. Society of Plastics Engineers Annual Technical Conference, ISBN 0975370707, 9780975370704, Chicago, USA, May 2004, pp. 688-692.
  60. 50. 李孟儒,以模穴壓力為基礎之射出成型品質監控方法,國立高雄第一科技大學,2003,機械與自動化工程系碩士論文
  61. 51. 謝明仁,模內壓力曲線的概念與應用,2009,Kistler 台灣分公司 

  62. 52. 呂維揚,應用膜內壓力監控技術改善射出產品收縮差異之研究,2014,國立高雄應用科技大學,碩士論文
  63. 59. 呂金虎,塑膠射出進階技術實務講義,2013,塑膠中心
  64. 61. 苟剛,基于PVT特性的微型精密注塑产品成型方法与设备的研究,北京化工大學,2012
  65. 62. 周天祥,C-Mold 射出成型模具設計,1999,新文京開發出版股份有限公司,ISBN 9575121643
  66. 63. Jerry M. Fischer, “Handbook of Molded Part Shrinkage and Warpage”, Brent Beckley/William Andrew, Inc., New York, 2003, ISBN:1-884207723
  67. 64. Herbert Rees, “Mold Engineering”, 2nd Edition, ISBN 978-957-21-6283-5, 2008. 03
  68. 65. 有方広洋,射出成形的不良對策,2010,全華科技圖書股份有限公司
  69. 67. "MTS Criterion® Series 40 Electromechanical Universal Test Systems," October 2014. [Online]. Available:https://www.mts.com/ucm/groups/public/documents/library/mts_006225.pd f. [Accessed 2015]
  70. 68. Ulik J. Using tie rod bending to monitor cavity filling pressure. Annual Technical Conference-ANTEC, 1997, 3.

  71. 69. Muefiller N,Schott N R. Injection molding tie bar extension measurements using strain gauge collars for optimized processing. Journal of injection molding technology, 2000, 4(3): 120-125.
  72. 70. Malloy R A, Chen S J, A study of injection to holding pressure switchover techniques based on time, position and pressure. Annual Technical Conference— ANTEC, 1987.
  73. 71. Orzechowski S, Paris A, Dobbin C J B. A process monitoring and control system for injection molding using nozzle-based pressure and temperature sensors. Journal of Injection Molding Technology, 1998, 2(3):141-148.
  74. 72. Buja F J. Apparatus for data acquisition and application in an injection molding process. U.S. Patent 49041 72. 1990-02-27.
  75. 73. Wenskus J, Miller A. B. Method for precision volumetric control of a moldable material in an injection molding process. U.S. Patent 5063008. 1991-11-05.
被引用次数
  1. 黃品綱(2017)。半結晶聚合物應用PVT控制技術與射出成型品質之參數優化研究。中原大學機械工程學系學位論文。2017。1-115。