题名

基於粒子群演算法結合S轉換及關聯規則特徵篩選之軸心偏離分析

并列篇名

Rotor Eccentricity Analysis Based on Particle Swarm Optimization Combined with S-transform and Association Rule Feature Selection

DOI

10.6840/cycu201700610

作者

林承儒

关键词

粒子群演算法 ; S轉換 ; 風力發電機 ; 特徵篩選 ; Apriori演算法 ; 關聯規則 ; 倒傳遞類神經網路 ; PSO ; ST ; wind turbines ; feature selection ; Apriori algorithm ; association rules ; BPNN

期刊名称

中原大學電機工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

李俊耀

内容语文

繁體中文

中文摘要

本研究旨於提出粒子群模型最佳化S轉換參數分析(Particle swarm optimization-based S-transform, PST)結合關聯規則特徵篩選,針對風力發電機軸心偏離故障,進行訊號分析能力提升及特徵篩選,並以倒傳遞類神經網路與k最近鄰分類法進行故障檢測。 首先,本研究使用粒子群演算法(Particle swarm optimization, PSO)結合S轉換(S-transform, ST),構成粒子群模型最佳化S轉換參數分析,其目的為得到擴張函數 內最佳化之參數 ,其次,應用關聯規則特徵篩選(Association rule feature selection, ARFS),在訊號完成分析後擷取其特徵,再使用Apriori演算法找出特徵之關聯規則(Association rule),並進行特徵篩選,減少劣質特徵數量,以提升辨識率。 結果顯示,對於訊號分析問題,以本研究提出之粒子群模型最佳化S轉換參數分析,相較於小波多重解析分析、希爾伯特-黃轉換及S轉換等方法,對於軸心偏離故障檢測具有較佳準確率,而對於特徵篩選問題,本研究再應用關聯規則特徵篩選,有效減少劣質特徵,進一步提升倒傳遞類神經網路分類器辨識準確率。

英文摘要

This study proposes a particle swarm optimization-based S-transform (PST) combined with association rule feature selection (ARFS) approach with the aims to enhance the detection accuracy of the rotor eccentricity of wind turbines. Back propagation neural network (BPNN) and k-nearest neighbor algorithm (k-NN) are applied to the features to recognize the rotor eccentricity faults. First, this study combines a particle swarm optimization (PSO) algorithm with the S-transform to construct PST. The purpose of this method is to obtain the optimized parameter in the dilation to improve the detection accuracy. Second, this study proposes a new feature selection scheme. This study extracts the features of current signals in signal analysis method, and inputs these features to the Apriori algorithm to find the association rules and selects the effective features subset of features set. The method can reduce the negative features as well as improving the BPNN classifier more accurately. For the rotor eccentricity faults, the results indicate that the PST has better detection accuracy than wavelet transform (WT), Hilbert Huang transform (HHT) and S-transform (ST). Moreover, for the feature selection problem, the results show that the classification accuracies and the number of poor features of classifiers by using to the back propagation neural network (BPNN) is superior.

主题分类 電機資訊學院 > 電機工程學系
工程學 > 電機工程
参考文献
  1. [1] M. F. Hsieh and Y. H. Yeh, “Rotor eccentricity effect on cogging torque of PM generators for small wind turbines,” IEEE Trans. on Magnetics, vol. 49, no. 5, pp. 1897-1900, May. 2013.
    連結:
  2. [2] I. Tabatabaei, J. Faiz, H. Lesani, and M. T. Nabavi-Razavi, “Modeling and simulation of a salient-pole synchronous generator with dynamic eccentricity using modified winding function theory,” IEEE Trans. on Magnetics, vol. 40, no. 3, pp. 1550-1555, May. 2004.
    連結:
  3. [3] D. F. Shi, P. J. Unsworth, and R. X. Gao, “Sensorless speed measurement of induction motor using Hilbert transform and interpolated fast Fourier transform,” IEEE Trans. on Instrumentation and Measurement, vol. 55, no.1, pp. 290-299, 2006.
    連結:
  4. [4] M. A. Ehteram, M. Sadighi, and H. B. Tabrizi, “Analytical solution for thermal stresses of laminated hollow cylinders under transient nonuniform thermal loading,” Mechanika, pp. 30-37, 2011.
    連結:
  5. [5] E. Strabgas, S. Aviyente, and S. Zaidi, “Time-frequency analysis for efficient fault diagnosis and failure prognosis for interior permanent ac motor,” IEEE Trans. on Industry Electronics, vol. 55, no. 12, pp. 4191-4199, Dec. 2008.
    連結:
  6. [6] D. Borras, M. Castilla, N. Moreno, and J. C. Montano, “Wavelet and neural structure: A new tool for diagnostic of power system disturbances,” IEEE Trans. on Industry Applications, vol. 37, no.1, pp. 184-190, Jan.-Feb. 2001.
    連結:
  7. [7] P. Purkait and S. Chakravorti, “Pattern classification of impulse faults in transformers by wavelet analysis,” IEEE Trans. on Dielectrics and Electrical Insulation, col. 9, no. 4, pp. 555-561, Aug. 2002.
    連結:
  8. [8] J. A. Antonino-Daviu, M. Riera-Guasp, J. R. Folch, and M. P. M. Palomares, “Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in industrial induction machines,” IEEE Trans. on Industry Applications, vol. 42, no. 4, pp. 990-996, Jul.-Aug. 2006.
    連結:
  9. [9] H. G. Chen, Y. J. Yan, and J. S. Jiang, “Vibration-based damage detection in composite wingbox structures by HHT,” Mechanical Systems and Signal Proc., vol. 21, no. 1, pp. 307-321, 2007.
    連結:
  10. [10] T. Kijewski-Correa and A. Kareem, “Efficacy of Hilbert and wavelet transforms for time-frequency analysis,” Journal of Engineering Mechanics Asce, vol. 132, no. 10, pp. 1037-1049, 2006.
    連結:
  11. [12] S. R. Qin and Y. M. Zhong, “A new envelope algorithm of Hilbert-Huang transform,” Mechanical Systems and Signal Proc., vol. 20, no. 8, pp. 1941-1952, 2006.
    連結:
  12. [13] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proc. R. Soc. Lond. A, vol. 24, no. 6, pp. 903-995, 1998.
    連結:
  13. [14] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: The S transform,” IEEE Trans. Signal Proc., vol. 44, no. 4, pp. 998–1001, Apr. 1996.
    連結:
  14. [15] M. Schimmel and J. Gallart, “The inverse S-transform in filters with time-frequency localization,” IEEE Trans. on Signal Proc., vol. 53, no. 11, pp. 4417-4422, 2005.
    連結:
  15. [16] M. V. N. Chilukuri and P. K. Dash, “Multiresolution S-transform-based fuzzy recognition system for power quality events,” IEEE Trans. on Power & Energy Society, vol. 19, no. 1, pp. 323-330, 2004.
    連結:
  16. [17] J. X. Ning, J. H. Wang, W. Z. Gao, and C. Liu, “A wavelet-based data compression technique for smart grid,” IEEE Trans. on Smart Grid, vol. 2, no. 1, pp. 212-218, Mar. 2009.
    連結:
  17. [18] Z. X. Liu and S. L. Peng, “Boundary processing of bidimensional EMD using texture synthesis,” IEEE Signal Proc. Letters, vol. 12, no. 1, pp. 33-36, Jan. 2005.
    連結:
  18. [19] C. Damerval, V. Perrier, and S. Meignen, “A fast algorithm for bidimensional EMD,” IEEE Signal Proc. Letters, vol. 12, no. 10, pp. 701-704, Oct. 2005.
    連結:
  19. [20] N. I. A. Wahab and A. Mohamed, “Transient stability assessment of a large actual power system using probabilistic neural network with enhanced feature selection and extraction,” in Proc. of the International Conf. on Electrical Engineering and Informatics, vol. 2, pp. 519-524, Aug. 2009.
    連結:
  20. [21] N. A. Abdul-Kadir, R. Sudirman, and N. H. Mahmood, “Recognition system for nasal, lateral and trill arabic phonemes using neural networks,” in Proc. of the IEEE Student Conf. on Research and Development, pp. 229-234, Dec. 2012.
    連結:
  21. [23] N. Marin, C. Molina, J. M. Serrano, and M. A. Vila, “A complexity guided algorithm for association,” IEEE Trans. on Fuzzy Systems, vol. 16, no. 3, pp. 693-714, Jun. 2008.
    連結:
  22. [24] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Proc. 20th Int. Conf. Very Large Data Bases, 1994, pp. 478–499.
    連結:
  23. [25] W. Wu, G. R. Feng, and Z. X. Li, “Deterministic convergence of an online gradient method for BP neural networks,” IEEE Trans. on Neural Networks, vol. 16, no. 3, pp. 533-540, 2005.
    連結:
  24. [26] W. A. Chaovalitwongse, Y. J. Fan, and R. C. Sachdeo, “On the time series k-nearest neighbor classification of abnormal brain activity,” IEEE Trans. on System, Man and Cybernetics Part A: System and Humans, vol. 37, no. 6, pp. 1005–1016, Nov. 2007.
    連結:
  25. [27] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. on Pattern Analysis Machine Intelligence, vol. 11, no. 7, pp. 674-693, Jul. 1989.
    連結:
  26. [28] E. Y. Hamid and Z. I. Kawasaki, “Instrument for the quality analysis of power systems based on the wavelet packet transform,” IEEE Power Engineering Review, vol. 22, no. 3, pp. 52-54, Mar. 2002.
    連結:
  27. [29] A. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” in Proc. of the Royal Society London A, vol. 454, no. 1971, pp. 903-995, Mar. 1998.
    連結:
  28. [30] N. E. Huang and S. S. P. Shen, Hilbert–Huang transform and its applications. Hackensack, NJ: World Scientific Publishing Co., 2005.
    連結:
  29. [31] G. B. Huang, L. Chen, and C. K. Siew, “Universal approximation using incremental constructive feedforward networks with random hidden nodes,” IEEE Trans. on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
    連結:
  30. [32] A. A. El-Keib and X. Ma, “Application of artificial neural networks in voltage stability assessment,” IEEE Trans. on Power Systems, vol. 10, no. 4, pp. 1890-1896, Nov. 1995.
    連結:
  31. [34] P. D. Heermann and N. Khazenie, “Classification of multispectral remote sensing data using a back-propagation neural network,” IEEE Trans. on Geoscience and Remote Sensing, vol. 30, no. 1, pp. 81-88, Jan. 1992.
    連結:
  32. [11] J. B. Liu, X. W. Wang, and S. F. Yuan, “On Hilbert-Huang transform approach for structural health monitoring,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 8, pp. 721-728, 2006.
  33. [22] 曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,「資料探勘」,旗標出版股份有限公司,2006。
  34. [33] 汪惠健 譯,「類神經網路設計」,新加坡商湯姆生亞洲私人有限公司台灣分公司,2004。
  35. [35] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE International Conference on Neural Networks, 1995. Proc.. vol. 4, Perth, WA. November / December 1995, pp. 1942-1948.
  36. [36] Yuhui Shi and R. Eberhart, ‘‘A modified particle swarm optimizer,’’ in Proc. The 1998 IEEE International Conf. on, 1998. IEEE World Congress on Computational Intelligence. Evolutionary Computation Proceedings, Anchorage. AK, May 1998, pp. 69-73.
  37. [37] Y. d. Valle, G. K. Venayagamoorthy, S. Mohagheghi, J-C. Hernandez, and R. G. Harley, “Particle swarm optimization: Basic concepts, variants and applications in power systems,” IEEE Trans. on Evolutionary computation, vol. 12, no. 2, pp. 171-195, Apr. 2008.
  38. [38] 黃錦泉,「升科大四技電機與電子群基本電學升學寶典」,台灣科技大學,2017。