题名

可摻雜之電活性聚亞醯胺薄膜、微米球及奈米纖維之製備與性質探討

并列篇名

Preparation and Properties of Dopable Electroactive Polyimide Membranes、Microspheres and Nanofibers

DOI

10.6840/cycu201100457

作者

卓育賢

关键词

電活性 ; 聚亞醯胺 ; 氣體分離 ; 電噴灑 ; 感測器 ; 電紡絲 ; 超疏水 ; gas separation ; electroactive ; polyimide ; superhydrophobic ; sensor ; electrospraying ; electrospinning

期刊名称

中原大學化學系學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

葉瑞銘

内容语文

繁體中文

中文摘要

本論文中利用氧化偶合一步法合成穩定的半氧化半還原態之胺基封端苯胺三聚體 (Amine-capped aniline trimer;ACAT),並選為製備聚亞醯胺之雙胺單體,與非共平面之二酸酐 [4,4’-(4,4’-Isopropylidene-diphenoxy)bis (phthalic anhydride),BSAA] 合成電活性聚亞醯胺 (Electroactive Polyimide,EPI),由於EPI擁有電活性鏈段和聚亞醯胺的結構,故預期會結合兩者的優點如ACAT的氧化還原和可摻雜特性及聚亞醯胺本質上的高耐熱特性及強機械性質;基於以上幾點,本研究以EPI為原料利用不同方法製備出不同表面型態的成品,共分三種: (1) 薄膜 (EPI) (2) 微米球 (EPS) (3) 奈米纖維 (EPF),並依其特性應用於不同領域。   在薄膜系統中,是利用鑄模法製備出電活性聚亞醯胺緻密自由立膜 (Electroactive Polyimide Membranes,EPI),並製備出非電活性聚亞醯胺 (NEPI) 及聚苯胺 (PANI) 薄膜三者做比較,發現EPI的氧氮氣體分離能力為13.54,分別較NEPI和PANI高1.96和1.54倍,且經1.0 M鹽酸摻雜後更進一步提升了到16.63;而在熱性質及機械性質方面也比NEPI和PANI還要好。   在微米球系統中,利用電噴灑技術製備出電活性聚亞醯胺微米球 (Electroactive Polyimide Spheres,EPS),並應用在維生素C (AA) 感測器,藉由調控其電噴灑溶液濃度來改變EPS的大小製備出小顆 (EPSS-Small,EPSS) 和大顆 (EPS-Large,EPSL) 的粒子,並和EPI薄膜比較其對AA的電催氧化能力,發現粒徑最小的EPSS修飾電極電催化氧化能力分別比EPI薄膜和EPSL修飾電極高3倍和1.5倍。   在奈米纖維系統,則是利用電紡絲技術製備出可摻雜的多孔型電活性聚亞醯胺奈米纖維膜 (Electroactive Polyimide Nanofibers,EPF),EPF同時擁有電化學氧化還原及可逆摻雜特性,且因為奈米級的多孔型結構讓表面積大幅提升,使得EPF對鹽酸氣體和氨氣有更好的化學傳感靈敏度。   最後,聚亞醯胺奈米纖維的電活性及摻雜能力可利用改變二胺單體ACAT的比例來調控,製備出EPF及其共聚物 (ECPF) 和非電活性聚亞醯胺 (NEPF);因為EPF的連續粗糙表面可提升材料表面疏水效果,再加上其可摻雜的特性,在經過全碳氟酸 (perfluoro- octanesulfonic acid,PFOS) 摻雜後,降低其表面位能,使其接觸角從133º提升至超疏水的155º,有趣的是,經過氨氣的逆摻雜,EPF可以從超疏水切換為超親水。

英文摘要

In this study, we combine the amine-capped aniline trimer (ACAT) and 4,4’-(4,4’-Isopropylidene-diphenoxy)bis(phthalic anhydride) (BSAA) to prepare the Electroactive Polyimide (EPI), because EPI have electroacitve segment and imide structure, it is expected to integrate these advantages, such as ACAT redox and dopable properties and the nature of the polyimide of high heat resistance and strong mechanical properties, base on the above, we prepare EPI by various method to fabricate : (1) Membranes (2) Microspheres (3) Nanofibers, and applied in different field.   In the membrane system, using casting method to prepare electroactive polyimide membranes (EPI), which revealing advanced gas separation capability as well as mechanically and thermally enhanced properties. Polyaniline (PANI) and conventional non-electroactive PI (NEPI) membranes were also prepared for control experiments.   It should be noted that EPI membrane were found to reveal permselectivities () of O2/N2  13.54, which is ~1.96 and ~ 1.54-fold higher than that of NEPI and PANI, respectively, based on the investigation of gas permeability analysis (GPA). Upon doping with 1.0 M HCl, the pemselectivities of EPI for O2/N2 was found to be further increased to  16.63. Moreover, significant mechanically and thermally enhanced properties of as-prepared EPI membrane was also found as compared to that of NEPI and PANI membranes based on the studies of dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively.   In the microsphere system, electroactive polyimide microspheres (EPS) was successfully prepared by electrospraying technology and applied in the detection of ascorbic acid (AA). The particle size of EPS can be controlled by varying the concentration of spraying solution while the electrocatalysis oxidation properties can be influenced by the different particle sizes of EPS. A sensor constructed using EPSS (small particles)-modified electrode was found to show 3-fold and 1.3-fold higher electrocatalytic activity toward the oxidation of AA than those constructed using EPI thin film and EPSL (large particles), respectively.   In the nanofiber system, we have developed dopable porous electroactive polyimide nanofiber (EPF) non-woven mats by electrospun technology. The EPF shows both electrochemical redox activity and reversible dopability, simultaneously. The high surface area, small diameter, and porous nature of EPF give significantly better performance in sensitivity for chemical sensing of HCl or NH3 gas.   Finally, degree of electrochemical activity and dopable property can be tuned by varying the content of ACAT existed in as-prepared electro-spun EPF mats. After doping with perfluorooctanesulfonic acid (PFOS), water contact angle of EPF surface is increased from hydrophobicity of 133º to superhydrophobicity of 155º. It is interesting that the EPF mat undergoes a switchable process from superhydrophobicity to superhydrophilicity via doping with PFOS and de-doping with ammonium gas.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 2. A. G. MacDiarmid, A. J. Heeger, Synth. Met., 1978, 1, 1013.
    連結:
  2. 5. H. Letheby, J. Chem. Soc. 1862, 15, 161.
    連結:
  3. 6. A. G. Green, A. E. Woodhead, J. Chem. Soc., Trans., 1910, 97, 2388.
    連結:
  4. 7. L. Langer, Solid State Commun., 1978, 26, 839.
    連結:
  5. 8. H. R. Allcock, F. W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, New Jersey, 1990, 50.
    連結:
  6. 9. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
    連結:
  7. 10. E. M. Genies, A. A. Syed, C. Tsintavies, Mol. Cryst. Liq. Cryst., 1985, 121,181.
    連結:
  8. 11. K. Hyodo, Electrochim Acta, 1994, 39, 265.
    連結:
  9. 13. A. G. MacDiamid, L. S. Yang, W. S. Huang, B. D. Humphrey, Synth. Met., 1987, 18, 393.
    連結:
  10. 14. S. Chao, M. S. Wrighton, J. Am. Chem. Soc., 1987, 109, 6627.
    連結:
  11. 16. A. O. Patil, A. J. Heeger, F. Wudl, Chem. Rev., 1998, 88, 183.
    連結:
  12. 18. J. Honzl, M. Tlastakova, J. Polym. Sci., 1968, 22, 451.
    連結:
  13. 21. R. A. Singer, J. P. Sadighi, S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 213.
    連結:
  14. 22. J. P. Sadighi, R. A. Singer, S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 4960.
    連結:
  15. 23. W. J. Zhang, J. Feng, A. G. MacDiarmid, A. J. Epstein, Synth. Met., 1997, 84, 119.
    連結:
  16. 25. Y. Wei, C. Yang, T. Ding, Tetrahedron Latt., 1996, 37, 731.
    連結:
  17. 26. W. Lu, X. S. Meng, Z. Y. Wang, J. Polym. Sci. Part A: Polym. Chem., 1999, 37, 4295.
    連結:
  18. 27. D. Chao, L. Cui, X. Lu, H. Mao, Z. Y. Wang, Y. Wei, Eur. Polym. J., 2007, 43, 2641.
    連結:
  19. 32. L. H. Huang, J. Hu, L. Lang, X. Wang, P. B. Zhang, X. B. Jing, X. H. Wang, X. S. Chen, P. I. Lelkes, A. G. MacDiarmid, Y. Wei, Biomaterials, 2007, 28, 1741.
    連結:
  20. 33. Z. H. Huang, K. Y. Qui, Polym. Bull., 1995, 35, 607.
    連結:
  21. 37. H. H. Huang, G. L. Willkes, Polymer, 1989, 30, 2001.
    連結:
  22. 43. M. Oba, J. Polym. Sci.Part A: Polym. Chem., 1996, 34, 651.
    連結:
  23. 45. P. M. Hergenrother, Appl. Polym. Symp., 1973, 22, 57.
    連結:
  24. 46. C. P. Yang, S. H. Hsiao, J. Appl. Polym. Sci., 1985, 30, 2883.
    連結:
  25. 48. J. M. Yeh, C. L. Chen, T. H. Kuo, W. F. Su, H. Y. Huang, D. J. Liaw, H. Y. Lu, C. F. Liu, Y. H. Yu, J. Appl. Polym. Sci., 2004, 92, 1072.
    連結:
  26. 49. K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 1993, 31, 2493.
    連結:
  27. 51. J. M. Yeh, M. Y. Yu, S. J. Liou, J. Appl. Polym. Sci., 2003, 89, 3632.
    連結:
  28. 53. R. A. Dine-Hart, W. W. Wright, J. Appl. Polym. Sci., 1967, 11, 609.
    連結:
  29. 54. J. A. Kreuz, J. Polym. Sci. Part A: Polym. Chem., 1990, 28, 3787.
    連結:
  30. 55. R. J. W. Reynold, J. d. Saddon, J. Polym. Sci., Part C: Polym. Lett., 1968, 23, 45.
    連結:
  31. 56. J. M. Yeh, C. P. Chin, S. S. Chang, J. Appl. Polym. Sci., 2003, 88, 3264.
    連結:
  32. 57. J. M. Yeh, C. P. Chin, J. Appl. Polym. Sci., 2003, 88, 1072.
    連結:
  33. 59. L. W. Jang, D. C. Lee, J. Appl. Polym. Sci., 1996, 61, 1117.
    連結:
  34. 60. E. P. Giannelis, Adv. Mater., 1996, 8, 29.
    連結:
  35. 62. H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, D. R. Paul, Polymer, 2001, 42, 9513.
    連結:
  36. 63. Y. Wang, N. Herron, Solid State Commun., 1991, 77, 33.
    連結:
  37. 67. D. Makino, L. F. Thompson, C. G. Willame, ACS Sympos. Ser., 1994, 26, 537.
    連結:
  38. 68. J. Cech, A. Burnett, C. P. Chien, EP&P, 1994, 4, 12.
    連結:
  39. 73. M. Mulder, “Basic principles of membrane technology 2nd edition”, Kluwer Academic, Netherland, 1996.
    連結:
  40. 74. M. H. Klopffer, B. Flaconnèche, Oil Gas Sci. Technol., 2001, 56, 223.
    連結:
  41. 75. D. R Paul, Y. P Yampol’skii, “Polymeric gas separation membranes”, CRC Press, Inc., U.S.A, 1994.
    連結:
  42. 76. P. Pandey, R. S. Chauhan, Prog. Polym. Sic., 2001, 26, 853.
    連結:
  43. 77. L. M. Robeson, J. Membr. Sci., 1991, 62, 165.
    連結:
  44. 78. Z. Wang, T. Chen, J. Xu, Macromolecules, 2000, 33, 5672.
    連結:
  45. 79. M. Niwa, S. Nagaoka, H. Kawakami, J. Appl. Polym. Sci., 2006, 100, 2436.
    連結:
  46. 81. J. H. Kim, S. B. Lee, S. Y. Kim, J. Appl. Polym. Sci., 2000, 77, 2756.
    連結:
  47. 82. S. L. Huang, J. Y. Lai, J. Membr. Sci., 1995, 105, 137.
    連結:
  48. 86. C. T. Wright, D. R.Paul, J. Appl. Polym. Sci., 1998, 67, 875.
    連結:
  49. 89. J. Y. Lai, S. J. Huang, S. L. Huang, S. S. Shyu, Sep. Sci. Technol., 1995, 30, 461.
    連結:
  50. 90. M. Yoshimune, I. Fujiwara, K. Haraya, Carbon, 2007, 45, 553.
    連結:
  51. 95. S. Husain, W. J. Koros, J. Membr. Sci., 2007, 288, 195.
    連結:
  52. 96. D, Sen, H. Kalipcilar, L. Yilmaz, “Development of zeolite filled polycarbonate mixed matrix gas separation membranes”, Desalination, 2006, 200, 222.
    連結:
  53. 97. M. Mulder, “Basic principles of membrane technology”, Kluwer Academic, Dordrecht/Boston/London, 1991.
    連結:
  54. 99. M. R. Pixton, D. R. Paul, Polymer, 1995, 36, 3165.
    連結:
  55. 103. X. G. Jian, Y. Dai, L. Zeng, R. X. Xu, J. Appl. Polym. Sci., 1999, 71, 2385.
    連結:
  56. 105. Y. Li, M. Ding, J. Xu, Eur. Polym. J., 1996, 32, 1313.
    連結:
  57. 108. I. Kresse, A. Usenko, J. Springer, V. Privalko, J. Polym. Sci. Polym. Phys., 1999, 37, 2183.
    連結:
  58. 110. B. Wessling, Mater. Corros., 1996, 47, 439.
    連結:
  59. 111. Y. Wei, C. Yang, T. Ding, Tetrahedron Latt., 1996, 37, 731.
    連結:
  60. 115. A. J. Bondi, Phys. Chem., 1964, 68, 441.
    連結:
  61. 117. P.C. Chiang, W.T. Whang, M.H. Tsai, S.C. Wu ,Thin Solid Films, 2004, 447, 359.
    連結:
  62. 119. D. W. Breck, “Zeolite Molecular Sieves”, Kriger, Malabar, 1974.
    連結:
  63. 123. H. L. Wanga, B. R. Mattes, Synthetic Metals, 1999, 102, 1333.
    連結:
  64. 125. M. J. Chang, Y. H. Liao, A. S. Myerson, T. K. Kwei, J. Appl. Polym.Sci., 1996, 62, 1427.
    連結:
  65. 126. L. Rebattet, M. Escoubes, E. Genies, M. Pineri, J. Appl. Polym. Sci., 1995, 57, 1595.
    連結:
  66. 127. S. Kuwabata, C. R. Martin, J. Membr. Sci., 1994, 91, 1.
    連結:
  67. 129. C. J. Cornelius, E. Marand, J. Membr. Sci., 2002, 202, 97.
    連結:
  68. 131. Y. H. Kim, H. S. Kim, S. K. Kwon, Macromolecules, 2005, 38, 7950.
    連結:
  69. 132. B. T. Low, T. S. Chung, H. M. Chen, Y. C. Jean, K. P. Pramoda, Macromolecules, 2009, 42, 7042.
    連結:
  70. 133. L. M. Robeson, Curr. Opin. Solid St. M., 1999, 4, 549.
    連結:
  71. 134. P. Iyer, G. Iyer, M. Coleman, J. Membr. Sci., 2010, 358, 26.
    連結:
  72. 137. L. M. Robeson, J. Membr. Sci., 2008, 320, 390.
    連結:
  73. 138. J. Zeleny, Phys Rev., 1917, 10, 1.
    連結:
  74. 144. D. C. Gale, R. D. Smith, Rapid Commum. Mass Spectrom., 1993, 7, 1017.
    連結:
  75. 145. S. Wilm, M. Mann, J. Mass Spectrom. Ion Process, 1994, 136, 167.
    連結:
  76. 146. S. Wilm, M. Mann, Anal. Chem., 1996, 68, 1.
    連結:
  77. 147. S. J. Gaskell, J. Mass Spectrom., 1997, 32, 677.
    連結:
  78. 148. R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga, H. R. Udseth, Anal. Chem., 1990, 62, 882.
    連結:
  79. 149. 陳逸然、何國榮,生物質譜法概論,2002, 60, 75.
    連結:
  80. 150. A. Gomez, K. Tang, Phys. Fluids., 1994, 6, 2317.
    連結:
  81. 155. A. Kallner, D. Hartmann, D. Hornig, Am. J. Clin. Nutr., 1979, 32, 530.
    連結:
  82. 156. (Baker et al.,1971)
    連結:
  83. 158. C. W. Woodruff, Prog. Food Nutr. Sci., 1975, 1, 493.
    連結:
  84. 159. K. Stolze, N. Udilova, H. Nohl, Free Radical Biology & Medicine, 2000, 29, 1005.
    連結:
  85. 161. G. Karg, J. Wilmott, A. Znaiden, Cosmet. Toiletries, 1987, 102, 37.
    連結:
  86. 164. E. B. Finley, F. L. Cerklewski, Am. J. Clin. Nutr., 1983, 37, 553.
    連結:
  87. 165. R. R. Eitenmiller, W. O. Landen, “Vitamin analysis for the health and food sciences”, CRC Press, Boca Raton, USA, 1999, 223.
    連結:
  88. 167. P. Spiclin, M. Gasperlin, V. Kmetec, Int. J. Pharm., 2001, 222, 271.
    連結:
  89. 177. J. Janata, Principle of Chemical Sensor, Plenum Press, New York, 1989.
    連結:
  90. 181. A. J. Bard, L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, New York, 2001.
    連結:
  91. 184. J. H. Roe, The Journal of Biological Chemistry, 1961, 236, 1611.
    連結:
  92. 187. 曾豐年,利用火焰式原子吸收光譜儀以校正曲線法及標準添加法檢測市售五種礦物性中藥中鉛、鎘、銅及鎳重金屬含量,朝陽科技大學應用化學系,2002, 10.
    連結:
  93. 190. M. H. Pournaghi-Azar, R. Ojani, Talanta, 1995, 42, 1839.
    連結:
  94. 191. I. G. Casella, Electroanalysis, 1996, 8, 128.
    連結:
  95. 195. A. S. N. Murthy , J. Sharma, Talanta, 1998, 45, 951.
    連結:
  96. 201. R. Takita, K. Yoshida, J. Anzai, Sensors and Actuators B, 2007, 121, 54.
    連結:
  97. 202. J. Zeleny, J. Phys. Pev., 1914, 3, 69.
    連結:
  98. 204. D. H. Reneker, I. Chun, Nanotechnolog, 1996, 7, 216.
    連結:
  99. 206. G. I. Taylor, Proc. R. Soc. London, 1964, 280, 383.
    連結:
  100. 207. M. Cloupeau, B. Prunet-Foch, J. Electrostatics, 1989, 22, 135.
    連結:
  101. 210. P. K. Baumgartyen, J. Colloid Interface Sci., 1971, 36, 71.
    連結:
  102. 213. H. Liu, Y. L. Hsieh, J. Polym. Sci. Part : B Polym. Phys., 2001, 40, 2119.
    連結:
  103. 216. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, J. Polym. Sci., Part : B Polym. Phys., 2003, 41, 1256.
    連結:
  104. 217. D. Li, Y. Xia, Nano. Letters., 2003, 3, 555.
    連結:
  105. 219. T. Lin, H. Wang, H. Wang, X. Wang, Nanotechnology, 2004, 15, 1375.
    連結:
  106. 222. S. Koombhongse, W. Liu, D.H. Reneker, J. Polym. Sci. Part : B Polym. Phys., 2001, 39, 2598.
    連結:
  107. 225. L. Wannatong, A. Sirivat, P. Supaphol, Polym. Int., 2004, 53, 1851.
    連結:
  108. 227. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, J. Polym. Sci. Part : B Polym. Phys., 2002, 40, 2259.
    連結:
  109. 230. Holten, “Lactic acid: Properties and Chemistry of Lactic acid and Derivatives”, V. Chemie, 1971, 221.
    連結:
  110. 232. 楊炎橙,“以電氣紡絲製備具有奈米結構之生物分解性薄膜”,台北醫學大學口腔醫學院,口腔復健醫學研究所碩士論文。(2004).
    連結:
  111. 235. S. Middelhoek, D. J. W. Noorlag, Sensors and Actuators B, 1981, 2, 29.
    連結:
  112. 237. W. Gopel, T. A. Jones, M. Kleitz, J. Lundstrom, T. Seiyama, Chemical and Biochemical Sensors, 1991, 2.
    連結:
  113. 239. M. Tong, G. Dai, D. Gao, Mater. Chem. Phys., 2001, 69, 176.
    連結:
  114. 248. O. Niwa, T. Tamamura, J. Chem. Soc.,Chem Comm., 1984, 817.
    連結:
  115. 250. G. Nagasubramanian, S. D. Stefano, J. Moacanin, J. Phys. Chem., 1986, 90, 4447.
    連結:
  116. 255. E. T. Kang, K. G. Neoh, K. L. Tan, Prog. Polym. Sci., 1998, 23, 277.
    連結:
  117. 258. J. X. Huang, R. B. Kaner, J. Am. Chem. Soc., 2004, 126, 851.
    連結:
  118. 259. J. X. Huang, R. B. Kaner, Angew. Chem. Int. Ed., 2004, 43, 5817.
    連結:
  119. 261. Y. Zhu, J. C. Zhang, Y. M. Zheng, Z. B. Huang, L. Feng, L. Jiang, Adv. Funct. Mater., 2006, 16, 568.
    連結:
  120. 264. C. Subramanian, R. A. Weiss, M. T. Shaw, Polymer, 2010, 51, 1983.
    連結:
  121. 265. W. Cui, X. Li, S. Zhou, J. Weng, J. Appl. Polym. Sci., 2007, 103, 3105.
    連結:
  122. 266. W. Barthlott, C. Neinhuis, Planta, 1997, 1-8, 202.
    連結:
  123. 270. R. N. Wenzel, Ind. Eng. Chem., 1936, 28, 988.
    連結:
  124. 271. A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 1944, 40, 546.
    連結:
  125. 272. A. B. D. Cassie, S. Baxter, J. Text. Inst., 1945, 36, T67.
    連結:
  126. 274. J. P. Youngblood, T. J. McCathy, Macromoleculs, 1999, 32, 6800.
    連結:
  127. 275. S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, J. Colloid Int. Sci., 1998, 208, 287.
    連結:
  128. 276. R. Blossey, Nature Materials, 2003, 2, 301.
    連結:
  129. 279. L. Jiang, D. Zhu, Angew. Chem. Int. Ed., 2004, 43, 357.
    連結:
  130. 289. D. M. Chao, J. F. Zhang, X. C. Liu, X. F. Lu, C. Wang, W. J. Zhang, Y. Wei, Polymer, 2010, 51, 4518.
    連結:
  131. 1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun., 1977, 578.
  132. 3. J. L. Bredas, S. R. Marder, W. R. Salaneck, Macromolecules, 2002, 35 (4), 1.
  133. 4. Y. Wei, C. Yang, T. Ding, J. M. Yeh, G. Wei, Polym. Mater. Sci. Eng., 1996, 74, 209.
  134. 12. G. Gustafsson, Y. Cao, G. M. Treacy, F. K. Lavetter, N. Cplaneri A. J. Heeger Nature, 1992, 357 , 477.
  135. 15. E. W. Pual, A. J. Ricco, M. S. Wrighton, J. Phy. Chem., 1985, 89, 1441.
  136. 17. (a) S. P. Sitaram, J. O. Stoffrt, T. J. O’Keefe, J. Coating tech., 1997, 69, 866. (b) J. R. Santos, L. H. C. Mattoso, A. J. Motheo, Electrochim Acta, 1998, 43, 309.
  137. 19. F. L. Lu, F. Wudl, M. Nowak, A. J. Heeger, J. Am. Chem. Soc., 1986, 108, 8311.
  138. 20. E. Rebourt, J. A. Joule, A. P. Monkman, Synth. Met., 1997, 9, 8465.
  139. 24. Z. Y. Wang, C. Yang, J. P. Gao, J. Lin, X. S. Meng, Y. Wei, S. Li, Macromolecules, 1998, 31, 2702.
  140. 28. D. Chao, X. Lu, J. Chen, X. Zhao, L. Wang, W. Zhang, Y. Wei, J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 477.
  141. 29. D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, Y. Wei, Macromol. Chem. Phys., 2007, 6, 658.
  142. 30. D. Chao, X. Ma, X. Lu, L. Cui, H. Mao, W. Zhang, Y. Wei, J. Appl. Polym. Sci., 2007, 104, 1603.
  143. 31. D. Chao, X. Lu, J. Chen, X. Liu, W. Zhang, Y. Wei, Polymer, 2006, 47, 2643.
  144. 34. M. Bergain, A. Combet, P. Grosjean, Brit. Patent Spec., 1970, 190, 788.
  145. 35. S. A. Zahir, A. Renner, U. S. Patent , 1978, 100, 140.
  146. 36. 林金雀,化工資訊,1999, 8.
  147. 38. 謝啟發,中原大學博士論文,2006.
  148. 39. 劉時州,中原大學博士論文,2005.
  149. 40. M. K. Ghosh, K. L. Mittal, “Polyimides: Fundamentals and Applications”, 1~6, Marcel Dekker, Inc., 1996.
  150. 41. K. G. Malay, K. L. Mittal, “Polyimides: Fundamentals and Applications”, Marcel Dekker, New York, 1996.
  151. 42. T. Kaneda, M. Horio, T. Katsura, H. Makino, K. Nakagawa, J. Appl. Polym. Sci., 1986, 32, 3133.
  152. 44. N. A. Adrova, M. I. Bessonov, L. A. Laius, A. P. Rudakov, ”Polyimide: A new class of thermally stable polymers(in Russian)”, Nauka, Leningrad, 1968.
  153. 47. 邱致銘,成功大學碩士論文,2003.
  154. 50. K. Yano, A. Usuki, A. Okada, J. Polym. Sci. A: Polym. Chem., 1997, 35, 2289.
  155. 52. 陳坤玉,中原大學論文,2002.
  156. 58. Y. H. Yu, J. M. Yeh, S. J. Liou, C. L. Chen, D. J. Liaw, H. Y. Lu, J. Appl. Polym. Sci., 2004, 92, 3573.
  157. 61. C. Zilg, R. Thomann, R. Mulhaupt, J. Finter, Adv. Mater., 1999, 11, 49.
  158. 64. 馬振基,塑膠資訊,1997, 7.
  159. 65. 金進興,工業材料,1996, 114, 118.
  160. 66. G. Samnelson, ”Polyimides for multilevel VLSI and α protection.”, Short Course on Polyimides for Microelectronic Application, UC at Berkley, 1981.
  161. 69. 劉怡君,工業材料,1999, 156, 98.
  162. 70. 林金雀,化工資訊,1999, 13, 29.
  163. 71. 陳啟倫,中原大學博士論文,2005.
  164. 72. R. W. Baker, “Membrane Technology and Applications”, Menlo Park, McGraw-Hill, California, 2000.
  165. 80. L. Wang, Y. Cao, M. Zhou, S. J. Zhou, Q. Yuan, J. Membr. Sci., 2007, 305, 338.
  166. 83. Y. Hu, T. Sakaguchi, M. Shiotsuki, F. Sanda, T. Masuda, J. Membr. Sci., 2006, 285, 412.
  167. 84. S. Takahashi, M. Yoshida, M. Asano, T. Tanaka, T. Nakagawa, J. Appl. Polym. Sci., 2001, 82, 206.
  168. 85. J. Won, M. H. Kim, Y. S. Kang, H. C. Park, U. Y. Kim, S. C. Choi, S. K. Koh, J. Appl. Polym. Sci., 2000, 75, 1554.
  169. 87. R. C. Ruaan, T. H. Wu, S. H. Chen, J. Y. Lai, J. Membr. Sci., 1998, 138, 213.
  170. 88. M. H. Kim, J. H. Kim, C. K. Kim, Y. S. Kang, H. C. Park, J. O. Won, J. Polym. Sci. Polym. Phys., 1999, 37, 2950.
  171. 91. W. Wei, G. Qin, H. Huc, L. You, G. Chen, J. Membr. Sci., 2007, 303, 80.
  172. 92. J. Bergh, W. Zhu, J. Gascon, J. A. Moulijn, F. Kapteijn, J. Membr. Sci., 2008, 316, 35.
  173. 93. Y. Li, H. Chen, J. Liu, W. Yang, J. Membr. Sci., 2006, 277, 230.
  174. 94. Q. Liu, T. Wang, C. Liang, B. Zhang, S. Liu, Y. Cao, J. Qiu, Chem. Mater., 2006, 18, 6283.
  175. 98. 丁孟賢,何天白,聚醯亞胺新型材料,1998.
  176. 100. K. Ghosal, R. T. Cherm, B. D. Freeman, W. H. Daly, Negulescu II. Macromolecules, 1996, 29, 4360.
  177. 101. M. R. Pixton, D. R. Paul, Polymer, 1995, 14, 2745.
  178. 102. C. T. Wright, D. R. Paul, Polymer, 1997, 8, 1871.
  179. 104. K. Tanaka, H. Kita, M. Okano, K. I. Okamoto, Polymer, 1992, 33, 585.
  180. 106. A. Singh, K. Ghosal, B. D. Freeman, A. E. Lozano, J. G. Campa, J. Abajo, Polymer, 1999, 40, 5715.
  181. 107. Z. K. Xu, M. Bohning, J. D. Schultze, G. T. Li, J. Springer, F. P. Glatz, R. Mulhaupt, Polymer, 1997, 38, 1573.
  182. 109. S. L. Liu, R. Wang, Y. Liu, M. L. Chng, T. S. Chung, Polymer, 2001, 42, 8847.
  183. 112. Y. Guo, A. Mylonakis, Z. Zhang, P. I. Lelkes, K. Levon, S. Li, Q. Feng, Y. Wei, Macromolecules, 2007, 40, 2721.
  184. 113. Huang, S. H.; Hu, C. C.; Lee, K. R.; Liaw, D. J.; Lai, J. Y. Eur. Polym. J. 2006, 42, 140.
  185. 114. T. Suzukia, Y. Yamada, Y. Tsujita, Polymer, 2004, 45, 7167.
  186. 116. R. F. Branchi, H. N. da Cunha, R. M. Faria, J. Phys. D: Appl. Phys., 2005, 38, 143.
  187. 118. R. Szostak, “Handbook of Molecular Sieves”, Van Nostrand Reinhold, New York, 1992.
  188. 120. M. R. Anderson, B. R. Mattes, H. Heiss, R. B. Kaner, Science, 1991, 252, 1412.
  189. 121. M. R. Anderson, B. R. Mattes, H. Heiss, R. B. Kaner, Synthetic Metals, 1991, 41, 1151.
  190. 122. G. Illing, K. Hellgardt , M. Schonert , R. J. Wakeman, A. Jungbauer, J. Membr. Sci., 2005, 253, 199.
  191. 124. Y. M. Lee, S. Y. Ha, Y. K. Lee, D. H. Suh, S. Y. Hong, Ind. Eng. Chem. Res., 1999, 38, 1917.
  192. 128. T. M. Su, I. J. Ball, J. A. Conklin, S. C. Huang, R. K. Larson, S. L. Nguyen, B. M. Lew, R. B. Kaner, Synthetic Metals, 1997, 84, 801.
  193. 130. T. Suzuki, Y. Yamada, Y. Tsujita, Polymer, 2004, 45, 7167.
  194. 135. S. Pauly, “Polymer Handbook, 4th ed.”, J. Brandrup, E. H. Immergut, E. A. Grulke, New York, 1999, 543.
  195. 136. (a) W. H. Lin, T. S. Chung, J. Membr. Sci., 2001, 186, 183. (b) J. A. de Sales, P. S. O. Patrício, J. C. Machado, G. G. Silva, D. Windmöller, J. Membr. Sci., 2008, 310, 129.
  196. 139. M. L. Aleksandrov, L. N. Gall, V. A. Shkurov, N. V. Krasnow, V. I. Nikolaev, J. Anal. Chem. USSR., 1984, 39, 1268.
  197. 140. A. P. Bruins, T. R. Covey, J. D. Henion, Anal. Chem., 1987, 59, 2642.
  198. 141. J. A. Loo, R. R. Ogorzalek Loo, K. L. Light, C. G. Edmonds, R. D. Smith, Anal. Chem., 1992, 64, 81.
  199. 142. J. A. Olivares, N. T. Nguyen, C. R. Yonker, R. D. Smith, Anal. Chem., 1987, 59, 1232.
  200. 143. J. A. Wahl, D. R. Goodlett, H. R. Useth, R. D. Smith, Anal. Chem., 1992, 64, 3194.
  201. 151. M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice, Chem. Phys., 1968, 49, 2240.
  202. 152. J. V. Iribarne, B. A. Thormson, J. Chem. Phys., 1976, 64, 15.
  203. 153. U. Moser, A. Bendich, “Vitamin C. In: Handbook of Vitamins, 2nd ed.”, L. Machlin, Marcel Dekker, New York, 1991, 195.
  204. 154. B. M. Tolbert, Int. J. Vit. Nutr. Res., 1985, 27, 121.
  205. 157. S. Murad, D. Grove, K. A. Lindberg, G. Reynolds, A. Sivarajah, S. R. Pinnell, PNAS., 1981, 78, 2879.
  206. 160. P. Jurkovic, M. Sentjurc, M. Gasperlin, J. Kristl, S. Pecar, Eur. J. Pharm. Biopharm., 2003, 56, 59.
  207. 162. (a) R. Crippa, V. Horak, G. Prota, P. Svoronos, L. Wolfram, “Chemistry of melanins In: Brossi A (ed.)”, The Alkaloids 36, Academic Press, New York, 1989, 36, 253. (b) J. M. Wilmott, M. C. Duggan, A. P. Znaiden, Cosmetic Science and Technology Series., 1990, 10, 279.
  208. 163. C. M. Smith, W. R. Bidlack, J. Nutr., 1980, 110, 1398.
  209. 166. (a) G. M. Silva, P. M. B. G. M. Campos, J. Cosmet. Sci., 2000, 22,169. (b) M. Pokorski, M. Marczak, A. Dymecka, P. Suchocki, J. Biomed. Sci., 2003, 10, 193.
  210. 168. P. M. B. G. M. Campos, , G. M. Silva, Cosmetics & Toiletries, 2000, 115, 59.
  211. 169. P. Spiclin, M. Homar, A. Zupancic-Valant, M. Gasperlin, Int. J. Pharm., 2003, 256, 65.
  212. 170. M. Gallarate, M. E. Carlotti, M. Trotta, S. Bovo, Int. J. Pharm., 1999, 222, 271.
  213. 171. D. Gopinath, D. Ravi, B. R. Rao, S. S. Apte, D. Renuka, D. Rambhau, Int. J. Pharm., 2004, 271, 95.
  214. 172. C. G. Beddows, C. Jagait, M. J. Kelly, Food Chem., 2001, 73, 255.
  215. 173. G. M. Silva, P. M. B. G. M. Campos, Cosmetics & Toiletries, 2001, 116, 73.
  216. 174. W. Gopel, J. Hesse, J. N. Zemel, Sensors, VCH, New York, 1991.
  217. 175. 邱秋燕、周澤川,化學感測器之原理與應用,化工,1993, 16, 49.
  218. 176. 鄭煜騰、鄭耀宗,氣體感測器的市場分析與發展概況,新儀新知,1997, 18, 76.
  219. 178. 黃興閎,感測器於實車碰撞測試之應用,車輛研測資訊,2006, 11, 8.
  220. 179. 田民波、顏怡文,薄膜技術與薄膜材料,五南圖書出版股份有限公司,2007, 999.
  221. 180. S. Laschi, M. Mascini, Medical Engineering & Physics, 2006, 28, 934.
  222. 182. 吳朗,感測器原理與應用,全華出版社,臺北市,1987, 24.
  223. 183. 何照范,張迪清,保健食品化學及其檢測技測,文光圖書有限公司,2003, 115.
  224. 185. M. A. Farajzadeh, S. Nagizadeh, Journal of Analytical Chemistry, 2003, 58, 927.
  225. 186. T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, J. Fenol, The Analyst, 2001, 126, 1436.
  226. 188. M. C. Yebra, R. M. Cespón, A. Moreno-Cid, Analytica Chimica Acta, 2001, 448, 157.
  227. 189. P. Emadi-Konjin, Z. Verjee, A. V. Levin, K. Adeli, Clinical Biochemistry, 2005, 38, 450.
  228. 192. H. Maeda, Y. Yamauchi, M. Yoshida, H. Ohmori, Analytical Sciences, 1995, 11, 947.
  229. 193. A. M. Yu , H. Y. Chen, Analytica Chimica Acta, 1997, 344, 181.
  230. 194. Z, Gaoa, K. S. Siow, A. Ng, Y. Zhangb, Analytica Chimica Acta, 1997, 343, 49.
  231. 196. J. J. Sun, D. M. Zhou, H. Q. Fang, H. Y. Chen, Talanta, 1998, 45, 851.
  232. 197. J. M. Zen, D. M. Tsai, A. S. Kumar, V. Dharuman, Electrochemistry Communications, 2000, 2, 782.
  233. 198. X. L. Luo, J. J. Xu, W. Zhao, H. Y. Chen, Analytica Chimica Acta, 2004, 512, 57.
  234. 199. S. Wang, D. Du, Sensors and Actuators B, 2004, 97, 373.
  235. 200. B. Wang, T. Noguchi, J. Anzai, Talanta, 2007, 72, 415.
  236. 203. A. Formhals, US patent, 1934, 1975504.
  237. 205. H. Fong, I. Chun, D. H. Reneker, Polymer, 1999, 40, 4585.
  238. 208. J. Doshi, Ph. D. Dissertation, University of Akron, 1997, 102.
  239. 209. H. Xu, D. Galehouse, D. H. Reneker, Polymer Materials: Science & Engineering, 2003, 88, 37.
  240. 211. Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge, Polymer, 2001, 42, 9955.
  241. 212. D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. Appl. Phys., 2000, 87, 4531.
  242. 214. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, Polymer, 2002, 43, 4403.
  243. 215. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, Polymer, 2003, 44, 4029.
  244. 218. J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, Polymer, 2001, 42, 261.
  245. 220. A. Koski, K. Yim, S. Shivkumar, Materials Letters, 2004, 58, 493.
  246. 221. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Macromolecules, 2004, 37, 573.
  247. 223. M. Bognitzki, W.Czado, T. Frese, A. Schapor, M. Hellwig, M.Steinhart, A. Greiner, J. H. Wendorff, Adv. Mater., 2001, 13, 70.
  248. 224. S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Macromolecules, 2002, 35, 8456.
  249. 226. C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, Polymer, 1999, 40, 7397.
  250. 228. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol., 2003, 63, 2223.
  251. 229. M. Vert , S. Li , H. Garreau, Clin Mater., 1992, 10, 3.
  252. 231. S. A. Angadjivand, M. G. Schwartz, P. D. Eitzman, M. E. Jones. US patent, 2002, 6375886
  253. 233. Terms and Definitions in Industrial-Process Measurement and Control, International Electrotechnical Committee, 1982.
  254. 234. I. Lundström, M. S. Shivaraman, C. M. Svensson, J. Appl. Phys., 1975, 46, 3876.
  255. 236. M. Mada, “Fundamentals of Microfabrication”, CRC Press, 1997.
  256. 238. N. Funazaki, A. Hemmi, S. Ito, Y. Asano, Y. Yano, N. Miura, N. Yamazone, Sens. Actuators B, 1995, 24-25, 797.
  257. 240. 曾明漢,觸媒燃燒型氣體感測器,材料與社會,1992, 68, 57.
  258. 241. 楊明長、曾坤億、王瓊紫,一氧化碳感測器之原理與應用,化工技術,2000, 8(2), 158.
  259. 242. 周澤川,林宗榮,臺灣地區石化工廠中之化學感測器使用概況,化學技術,2002, 8(2), 116.
  260. 243. X. Wang, N. Miura, N. Yamazoe, Sens. Actuators B, 2000, 66, 74.
  261. 244. 陳一誠,金屬氧化物半導體型氣體感測器,材料與社會,1992, 68, 62.
  262. 245. 莊睦賢、黃炳照,氧氣感測器之應用,化工技術,2000, 8(2), 168.
  263. 246. C. Hylander, M. Armgarth, I. Lundstrom, Fukuoka, 1983, 203.
  264. 247. A. Mohammadi, M. A. Hasan, B. Liedberg, I. Lundstrom, W. R. Salanek, Synth. Met., 1986, 14, 189.
  265. 249. M. D. Paoli, R. J. Waltman, A. F. Diaz, J. Bargon, J. Polymer Sci., 1985, 23, 1687.
  266. 251. O. Niwa, M. Kakuchi, T. Tamamura, Macromolecules, 1987, 20, 749.
  267. 252. F. Selampinar, U. Akbulut, T. Yacin, S. Suzer and L. Toppare, Synth. Met., 1994, 62, 201.
  268. 253. W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc., Faraday Trans., 1986, 82, 2385.
  269. 254. N. E. Agbor, M. C. Petty, A. P. Monkman, Sens. Actuators B, 1995, 28, 173.
  270. 256. S. Virji, J. Huang, R. B. Kaner, B. H. Weiller, Nano Letters, 2004, 4, 491.
  271. 257. J. X. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc., 2003, 125, 314.
  272. 260. W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. SOC. Faraday Trans. 1, 1986, 82, 2385.
  273. 262. S. Virji, J. X. Huang, R. B. Kaner, B. H. Weiller, Nano Lett., 2004, 4, 491.
  274. 263. X. Li, X. Hao, D. Xu, G. Zhang, S. Zhong, H. J. Na, J. Membrane Sci., 2006, 281, 1.
  275. 267. http://www.basf.de/
  276. 268. www.botanik.unibonn.de/system/lotus/en/prinzip_html.html
  277. 269. 徐世昌, 科學發展, 2002, 354
  278. 273. N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, Langmuir, 2003, 19, 5626.
  279. 277. D. Öner, T. J. McCathy, Macromolecules, 2000, 16, 777.
  280. 278. D. P. Carlson, W. Schmiegel, “Ullmann’s Encyclopedia of Industrial Chemistry“, VCH Verlagsgesellschaft: Weinheim, 1988, 393.
  281. 280. H. K. Schmidt, “Organometallic. Chemistry”, Applied, 2001, 15, 331.
  282. 281. A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater., 1999, 16, 1365.
  283. 282. K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, Chem. Mater., 2000, 12, 590.
  284. 283. W. C. Alexander, Y. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, Langmuir, 1999, 15, 3395.
  285. 284. A. Nakajima, K. Hashimoto, T. Watanabe, Langmuir, 2000, 16, 7044.
  286. 285. 王怡婷,交通大學碩士論文,2006.
  287. 286. 黃冠燁,中原大學博士論文,2009。
  288. 287. C. J. Weng, J. Y. Huang, K. Y. Huang, Y. S. Jhuo, M. H. Tsai, J. M. Yeh, Electrochim. Acta, 2010, 55, 8430.
  289. 288. L. Chen, Y. Yu, H. Mao, X. Lu, L. Yao, W. Zhang, Y. Wei, Polymer, 2005, 46, 2825.
  290. 290. T. Miwa,Y. Okabe, M. Ishida, Polymer, 1997, 38, 4945.