题名

電漿改質濾材塗佈聚苯胺去除生物氣膠之研究

并列篇名

Antibioaerosol Properties of Plasma Modified Polypropylene Filter Coated with Polyaniline

DOI

10.6840/cycu201100887

作者

林毅

关键词

高週波電漿 ; 聚丙烯不織布濾材 ; 聚苯胺 ; 室內空氣品質 ; 表面改質 ; 生物氣膠 ; surface modification ; bioaerosol ; PANI (polyaniline) ; polypropylene filter ; RF plasma ; IAQ (Indoor air quality)

期刊名称

中原大學土木工程學系學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

内容语文

繁體中文

中文摘要

由於多數人的作息時間中有超過 80% 都是在室內,因此接觸室內空氣中生物性氣膠之機會隨之增加。 本研究因此以電漿改質傳統聚丙烯 (PP) 不織布濾材,並塗佈聚苯胺,藉由過濾方式濾除並加以抑制生物氣膠成長,減少濾材殘留之微生物回流,提升室內空氣品質。 電漿改質以主輝光區之效果最為快速有效。聚丙烯不織布在30 W, 0.05 torr, 5 sscm O2條件下改質15 sec後,進行親水性實驗,發現吸水率分別為主輝光區 (2489%) > 後輝光區 (2205%) >> 未改質 (404%)。 除此之外,經電漿改質之濾材,聚苯胺的塗佈率 (39.0%) 明顯高於未改質 (23.4%),即使經過超音震盪脫附三次後,聚苯胺之殘留塗佈率仍然達26.7%。 以塗佈聚苯胺之改質聚丙烯不織布濾材進行滴菌24 hr後洗菌,測試抑菌率,當超音波震盪脫附三次後之塗佈率為12.0%時,大腸桿菌之抑菌率可達100%;聚苯胺塗佈率5.0%時,枯草桿菌孢子之抑菌率即可達99.6%;聚苯胺抑制金黃色葡萄球菌的效率較低,在塗佈率8.7%時,抑菌率僅55.6%,但提高塗佈率至23.7%時,抑菌率仍可達100%。 以腔體模擬過濾系統之結果如下:對於大腸桿菌生物氣膠,未改質濾材之過濾效率 (71.2%) 與 改質濾材 (30 W, 15 sec, 聚苯胺塗佈率11.4%) (67.7%) 相差不大;但未改質濾材在過濾30 min結束且靜置30 min後與靜置0 min比較,抑菌效率僅30%,而改質濾材之抑菌效率已達80%且於靜置120 min後達到100%。 至於生物氣膠粒徑較小的枯草桿菌孢子,改質濾材的過濾效率僅有11.5%;而未改質PP因具有靜電力,有較高之過濾效率 (42.9%)。枯草桿菌孢子靜置培養之抑菌效率顯示:未改質濾材靜置30 min後與靜置0 min比較並沒有抑菌效果,反而大量繁殖;而改質濾材,在靜置30 min後之抑菌效率為66.7%,120 min 後可達100%。經由過濾所攔截之生物氣膠,會在480 min內完全被聚苯胺所去活化。 本研究顯示:以高週波氧氣電漿改質聚丙烯濾材,不但提高聚苯胺塗佈率,且有效抑制大腸桿菌或枯草桿菌孢子生物氣膠之生長,具有應用於改善室內空氣品質環境之潛力。

英文摘要

People pay more and more attention on the influence of indoor bioaerosol, because they spent over 80% of time inside buildings. In this study, polypropylene (PP) non-woven filter was modified by an oxygen-based RF plasma and was coated by polyaniline (PANI) to evaluate the inhibition efficiency of bioaerosols. PP non-woven filter was modified by an oxygen-based plasma under 30 W, 0.05 torr, 5 sscm O2 and 15 sec. The results of hydrophilic experiments showed the water absorption efficiency was most effective on the main glow region (2489%)> post-glow region (2205%) >> blank (404%). Additionally, the coating ratio of PANI was 39.0% for modified PP, which was higher than 23.4% for unmodified PP. Furthermore, after three times desorption by ultrasonic shaking, the residual PANI was still 26.7%. The inhibition efficiency of E. coli was 100% under 12.0% coated PANI on PP. The inhibition efficiency of Bacillus subtilis spores was 99.6% under 5.0% coated PANI on PP. The inhibition efficiency of Staphylococcus aureus was 100% under 23.7% coated PANI on PP. The results of the pilot test showed that the filtration efficiency of E coli was similar between modified PP (67.7%, under 30 W, 15 sec, 11.4% coated PANI) and unmodified PP (71.2%). The persistent inhibition efficiency of E.coli on unmodified PP for 30 min still duration after filtration was 30% comparing with 0 min. It was near 80% on modified PP for the same condition. The persistent inhibition efficiency reached 100% while duration extending to 120 min. Additionally, the filtration efficiency of Bacillus subtilis spores was 42.7% for unmodified PP, however, it was only 11.0% for modified PP. It was possibly because of the static electricity on unmodified PP leading to high filtration efficiency for Bacillus subtilis spores. No persistent inhibition efficiency of Bacillus subtilis spores was found on unmodified PP for 30 min still duration after filtration. It was 67.7% for modified PP for 30 min still duration, and reached to 100% for 120 min still duration after filtration. This study proved that not only the coating ratio of PANI was improved, but the inhibition efficiency of bioaerosols for the modified PP by an oxygen-based RF plasma. The test result of PANI coated PP further implied its potential application on indoor air quality improvement.

主题分类 工學院 > 土木工程學系
工程學 > 土木與建築工程
参考文献
  1. ACGIH (American Conference of Governmental Industrial Hygienist), “Threshold limit values and biological exposure indices”, 2010. (http://www.acgih.org/home.htm)
    連結:
  2. Chen, C. C., Huang, S. H., “The effects of particle charge on the performance of a filtering facepiece”, Am. Ind. Hyg. Assoc. J., 59, 227-233, 1998.
    連結:
  3. Cox, C. S., Nowoisky, J. F., Klose, M., Conrad , R., Andreae, M. O.,”Characterization of primary biogenic aerosol particles in urban rural and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes”, Biogeosciences, 4, 1127-1141, 1995.
    連結:
  4. Elsevier “Cleaner Healthier Environments: AFFCO Enhances Air Filter Performance with Electret Composites”, Filtr Separat, 35,118-122, 1998.
    連結:
  5. Fan, L., Song, J., Hildebrand, P. D., Forney C. F., “Interaction of ozone and negative air ions to control micro-organisms”, J. Appl. Microbiol., 93(1), 144-148, 2002.
    連結:
  6. Fujishima, A., Honda, K., “Electrochemical photolysis of water at a semiconducter electrode”, Nature, 238, 37-38, 1972.
    連結:
  7. Gweon, B., Kim, D. B., Moon, S. Y., Choe, W., “Escherichia Coli deactivation study controlling the atmospheric pressure plasma discharge conditions”, Curr. Appl. Phys., 9 (3), 625-628, 2009.
    連結:
  8. James, K. M., Mogens, S., “Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease”, Science, 297, 537-541, 2002.
    連結:
  9. Kellogg, E. W. III., Yost, M. G., Barthakur, N., Kreuger, A. P., “Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus”, Nature, 281, 400-401, 1979.
    連結:
  10. Kowasaki, W. J., Choi, Y. T., Seo, D. J., Park, S. B., “Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus”, Ozone-Sci. Eng., 20, 205-221, 1998.
    連結:
  11. Krueger, A. P., “Biological impact of small air ions”, Science, 193, 1209-1213, 1976.
    連結:
  12. Lacey, J., Dutkiewicz, J., “Bioaerosols and occupational lung disease”, J. Aerosol Sci., 25 (8), 1371-1404, 1994.
    連結:
  13. Lee, S., Naamura, M., Ohgai, S., “Inactivation of phase Q beta by 254 nm UV light and titanium dioxide photocatalyst”, J. Environ. Sci. Heal. A, 33, 1643-1655, 1998.
    連結:
  14. Letheby, H., Chem, J., Soc., 15, 161, 1862.
    連結:
  15. Li, C. S., Hsu, C. W., Chua, K. Y., Lin, R. H., “Bioaerosol characteristics in daycare centers”, J. Aerosol Sci., 27 (4), 653, 1996.
    連結:
  16. Lin, C. H., Li, C. S., “Effectiveness of titanium dioxide photocatalyst filter for controlling bioaerosol” , Aerosol Sci. Tech., 37, 162-170, 2003.
    連結:
  17. Liu, C., Chen, W. J., Martin, C. R., Mem, J., Sci., 65, 113, 1992.
    連結:
  18. Marija, R., Jared, R., Allan, J., Mark, A., “Broad-spectrum antimicrobial activity of functionalized polyanilines”, J. Actbio., 2011 (in press).
    連結:
  19. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T., “Continuous-sterilization system that uses photosemiconductor powders”, Appl. Environ. Microb., 54, 1330-1333, 1988.
    連結:
  20. Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., “Photo-electrochemical sterilization of microbial cells by semiconductor powders”, Fems. Microbiol. Lett., 29, 211, 1985.
    連結:
  21. Pasanen, A. L., Kalliokoski, P., Pasanen, P., Jantuene, J. M., “Nevalainen. laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity”, Environment International, 17, 225-228, 1991.
    連結:
  22. Pellegrino, J., Radebaugh, R., “Gas Sorption in Polyaniline. 1. Emeraldine Base”, Macromolecules, 29, 4985-4991 , 1996.
    連結:
  23. Rajeshwar, K. “Photoelectrochemistry and the environment”, J. Appl. Electrochem., 25 (12), 1067-1082, 1995.
    連結:
  24. Sunada, K., Kikuchi, Y., Hashimoto, K., Fujishima, A., “Bactericidal and detoxification effects of TiO2 thin film photocatalysts”, Environ. Sci. Technol., 32, 726-728, 1998.
    連結:
  25. 行政院環保署,室內空氣品質建議值,行政院環境保護署環署空字第0940106804號,2006。
    連結:
  26. 吳致呈,空氣負離子控制室內空氣污染物之研究,國立台灣大學環境工程研究所,博士論文,2006。
    連結:
  27. 李慧梅,余國賓,林思瑩,「合併光觸媒與空氣負離子對於生物氣膠控制之研究」,行政院國家科學委員會專題研究計畫成果報告,2006。
    連結:
  28. 婁嘉玲,紫外光與光觸媒濾材對生物氣膠殺菌效率之研究,國立台灣大學環境工程研究所,碩士論文,2005。
    連結:
  29. 曾國瑋,奈米銀濾材處理生物氣膠之研究,國立台灣大學環境工程研究所,碩士論文,2006。
    連結:
  30. 黃建賓,奈米碳管空氣負離子產生裝置控制生物氣膠之研究,國立台灣大學環境工程研究所,碩士論文,2008。
    連結:
  31. 楊心豪,帶電濾材對室內懸浮微粒去除效能之研究,國立台灣大學環境工程研究所,博士論文,2005。
    連結:
  32. Burge, H. A., Otten, J. A. “Bioaerosols: assessment and control Cincinnati”, ACGIH, Janet Macher ed, Part III Ch 19, 1999.
  33. Epstein, E., “Composting and bioaerosols”, Bio cycle, 35 (l), 51-58, 1994.
  34. Lumpkins, E. D., Corbit, S., “Airborne fungi survey: II. culture plate survey of the home environment”, Ann. Allergy, 36, 40-44, 1976.
  35. MacDiarmid, G., Chiang, J. C., Halpern, M., Huang, W. S., Mu, S. L., Somasir, N. L. D., Mol. Liq. Cryst., 121, 173, 1985.
  36. Macher, J., “Bioaerosols: assessment and control”, ACGIH, 1999.
  37. Morey, P. R., Hodgson, M. J., Sorenson, W. G., Kullman, G. J., Rhodes, W.W., Visvesvara G. S., “Environmental studies in moldy office buildings”, Div. of Respiratory Disease Studies, NIOSH, 399-419, 1986.
  38. Solomon, W. R., Mathews, K. P., Allergy/principles and practice, Publisher Mosby, St. Louis (USA), 1978.
  39. 王玉純,臭氧對生物氣膠殺菌效率之評估,國立台灣大學環境衛生研究所,碩士論文,2002。
  40. 王清禾,聚苯胺奈米複合材料及其導電性聚合物的製備,國立高雄應用科技大學化學工程與材料工程系,碩士論文,2006。
  41. 林玟仙,Dopa 之生物活性探討,嘉南藥理科技大學生物科技研究所,碩士論文,2005。
  42. 林思瑩,結合光觸媒與空氣負離子控制生物氣膠之研究,國立台灣大學環境工程研究所,碩士論文,2007。
  43. 林鴻鵬,紡織工業抗菌劑之比較,絲織公會,台灣區絲織產業網,第37期,2001。
  44. 陳克紹,許勝翔,電漿放電區與高分子材料被處理相對位置之親水化影響關係,2006能源與光電薄膜科技研討會暨國科會專題計畫研究成果發表會,D12,pp. 66,2006。
  45. 陳克紹,陳素真,洪翠禪,廖淑娟,表面電漿改質技術在生物醫學工程之應用,化工技術期刊,17卷,第八期,2010。
  46. 黃小林,莊佩君,黃宜靖,揚心豪,幾丁聚醣前處理濾材對細菌類生物氣膠去除效能之評估,國際氣膠研討會論文集,2006。
  47. 董家齊,陳寬任,奇妙的物質第四態-電漿,科學發展,第354期,2006。
  48. 劉寶蘊,劉利,張彥英,宮駿,石南林,孫超,聚苯胺的抗菌性及其機制,材料研究學報,第24卷,第3期,2010。
  49. 潘柏宏,聚苯胺金屬奈米複合管的合成及鑑定,國立中央大學化學工程與材料工程學系,碩士論文,2005。
  50. 戴仁軒,應用臭氧於室內生物性危害控制之研究,嘉南藥理科技大學產業安全衛生與防災研究所,碩士論文,2010。