参考文献
|
-
[1] C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145-2148.
連結:
-
[2] H. Kataoka, Current Developments and Future Trends in Solid-phase Microextraction Techniques for Pharmaceutical and Biomedical Analyses, Anal. Sci. 27 (2011) 893-893.
連結:
-
[3] D. Louch, S. Motlagh, J. Pawliszyn, Dynamics of organic compound extraction from water using liquid-coated fused silica fibers, Anal. Chem. 64 (1992) 1187-1199.
連結:
-
[4] Z. Zhang, J. Pawliszyn, Headspace solid-phase microextraction, Anal. Chem. 65 (1993) 1843-1852.
連結:
-
[5] G. Vas, K. Vékey, Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis, J. Mass Spec. 39 (2004) 233-254.
連結:
-
[6] H. Kataoka, Automated sample preparation using in-tube solid-phase microextraction and its application – a review, Anal. Bioanal. Chem. 373 (2002) 31-45.
連結:
-
[7] A. Namera, T. Saito, Advances in monolithic materials for sample preparation in drug and pharmaceutical analysis, TrAC Trends Anal. Chem. 45 (2013) 182-196.
連結:
-
[8] W. Li, X. Zhou, J. Ye, Q. Jia, Development of a γ-alumina- nanoparticle-functionalized porous polymer monolith for the enrichment of Sudan dyes in red wine samples, J. Sep. Sci. 36 (2013) 3330-3337.
連結:
-
[9] S. Tong, Q. Liu, Y. Li, W. Zhou, Q. Jia, T. Duan, Preparation of porous polymer monolithic column incorporated with graphene nanosheets for solid phase microextraction and enrichment of glucocorticoids, J. Chrom. A 1253 (2012) 22-31.
連結:
-
[10] X. Wang, X. Li, Z. Li, Y. Zhang, Y. Bai, H. Liu, Online Coupling of In-Tube Solid-Phase Microextraction with Direct Analysis in Real Time Mass Spectrometry for Rapid Determination of Triazine Herbicides in Water Using Carbon-Nanotubes-Incorporated Polymer Monolith, Anal. Chem. 86 (2014) 4739-4747.
連結:
-
[12] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi, Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks, Acc. Chem. Res. 34 (2001) 319-330.
連結:
-
[13] S. Kitagawa, R. Kitaura, S.-i. Noro, Functional Porous Coordination Polymers, Angew. Chem. Int. Ed. 43 (2004) 2334-2375.
連結:
-
[14] J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials, Micropor. Mesopor. Mat. 73 (2004) 3-14.
連結:
-
[15] Z.Y. Gu, C.X. Yang, N. Chang, X.P. Yan, Metal-organic frameworks for analytical chemistry: From sample collection to chromatographic separation, Acc. Chem. Res. 45 (2012) 734-745.
連結:
-
[16] P. Rocío-Bautista, I. Pacheco-Fernández, J. Pasán, V. Pino, Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – A review, Anal. Chim. Acta 939 (2016) 26-41.
連結:
-
[17] X.-F. Chen, H. Zang, X. Wang, J.-G. Cheng, R.-S. Zhao, C.-G. Cheng, X.-Q. Lu, Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry, Analyst, 137 (2012) 5411-5419.
連結:
-
[18] X.-Y. Cui, Z.-Y. Gu, D.-Q. Jiang, Y. Li, H.-F. Wang, X.-P. Yan, In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues, Anal. Chem. 81 (2009) 9771-9777.
連結:
-
[19] C. Hu, M. He, B. Chen, C. Zhong, B. Hu, Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples, J. Chromatogr. A 1310 (2013) 21-30.
連結:
-
[20] H.-B. Shang, C.-X. Yang, X.-P. Yan, Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples, J. Chromatogr. A 1357 (2014) 165-171.
連結:
-
[21] Y.-Y. Wu, C.-X. Yang, X.-P. Yan, Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls, J. Chromatogr. A 1334 (2014) 1-8.
連結:
-
[22] G. Zhang, X. Zang, Z. Li, C. Wang, Z. Wang, Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples, Talanta 129 (2014) 600-605.
連結:
-
[23] S. Zhang, Z. Du, G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples, Talanta 115 (2013) 32-39.
連結:
-
[24] Y.-A. Li, F. Yang, Z.-C. Liu, Q.-K. Liu, Y.-B. Dong, A porous Cd(II)-MOF-coated quartz fiber for solid-phase microextraction of BTEX, J. Mater. Chem. A 2 (2014) 13868-13872.
連結:
-
[25] N. Chang, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Metal-Organic-Framework-Based Tandem Molecular Sieves as a Dual Platform for Selective Microextraction and High-Resolution Gas Chromatographic Separation of n-Alkanes in Complex Matrixes, Anal. Chem. 83 (2011) 7094-7101.
連結:
-
[27] A. Aquino, K.A. Wanderley, C.d.O. Paiva-Santos, G.F. de Sá, M.d.R. Alexandre, S.A. Júnior, S. Navickiene, Coordination polymer adsorbent for matrix solid-phase dispersion extraction of pesticides during analysis of dehydrated Hyptis pectinata medicinal plant by GC/MS, Talanta 83 (2010) 631-636.
連結:
-
[28] S. Zhang, Z. Jiao, W. Yao, A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples, J. Chromatogr. A 1371 (2014) 74-81.
連結:
-
[29] C. Hu, M. He, B. Chen, C. Zhong, B. Hu, Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples, J. Chromatogr. A 1356 (2014) 45-53.
連結:
-
[30] C.-L. Lin, S. Lirio, Y.-T. Chen, C.-H. Lin, H.-Y. Huang, A novel hybrid metal-organic framework. Polymeric monolith for solid-phase microextraction, Chem. Euro. J. 20 (2014) 3317-3321.
連結:
-
[31] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Euro. J. 10 (2004) 1373-1382.
連結:
-
[32] Q. Yang, S. Vaesen, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. De Weireld, G. Maurin, Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools, J. Mater. Chem. 22 (2012) 10210-10220.
連結:
-
[33] L. Hamon, C. Serre, T. Devic, T. Loiseau, F. Millange, G. Férey, G.D. Weireld, Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal−Organic Frameworks at Room Temperature, J. Am. Chem. Soc. 131 (2009) 8775-8777.
連結:
-
[34] D.V. Patil, P.B.S. Rallapalli, G.P. Dangi, R.J. Tayade, R.S. Somani, H.C. Bajaj, MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions, Industrial & Engineering Chemistry Research 50 (2011) 10516-10524.
連結:
-
[35] Y. Xiao, T. Han, G. Xiao, Y. Ying, H. Huang, Q. Yang, D. Liu, C. Zhong, Highly Selective Adsorption and Separation of Aniline/Phenol from Aqueous Solutions by Microporous MIL-53(Al): A Combined Experimental and Computational Study, Langmuir 30 (2014) 12229-12235.
連結:
-
[36] L. Xie, D. Liu, H. Huang, Q. Yang, C. Zhong, Efficient capture of nitrobenzene from wastewater using metal-organic frameworks, Chem. Eng. J. 246 (2014) 142-149.
連結:
-
[37] M. Zhou, Y.-n. Wu, J. Qiao, J. Zhang, A. McDonald, G. Li, F. Li, The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al), J. Colloid Interface Sci. 405 (2013) 157-163.
連結:
-
[38] K. Hult, P. Berglund, Enzyme promiscuity: mechanism and applications, Trends Biotechnol. 25 (2007) 231-238.
連結:
-
[39] Y.-L. Chen, W. Li, Y. Liu, Z. Guan, Y.-H. He, Trypsin-catalyzed direct asymmetric aldol reaction, J. Mol. Catal. B Enzym. 87 (2013) 83-87.
連結:
-
[40] J.-P. Fu, N. Gao, Y. Yang, Z. Guan, Y.-H. He, Ficin-catalyzed asymmetric aldol reactions of heterocyclic ketones with aldehydes, J. Mol. Catal. B Enzym. 97 (2013) 1-4.
連結:
-
[41] Z. Guan, J.-P. Fu, Y.-H. He, Biocatalytic promiscuity: lipase-catalyzed asymmetric aldol reaction of heterocyclic ketones with aldehydes, Tetrahedron Lett. 53 (2012) 4959-4961.
連結:
-
[42] W. Haoran, W. Zhi, Z. Hong, C. Ge, Y. Hong, W. Lei, Enzyme catalytic promiscuity: asymmetric aldol addition reaction catalyzed by a novel thermophilic esterase in organic solvent, Green Chem. Lett. Rev. 7 (2014) 145-149.
連結:
-
[43] Y.-H. He, H.-H. Li, Y.-L. Chen, Y. Xue, Y. Yuan, Z. Guan, Chymopapain-Catalyzed Direct Asymmetric Aldol Reaction, Adv. Synth. Catal. 354 (2012) 712-719.
連結:
-
[44] C. Li, X.-W. Feng, N. Wang, Y.-J. Zhou, X.-Q. Yu, Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction, Green Chem. 10 (2008) 616-618.
連結:
-
[45] C. Li, Y.-J. Zhou, N. Wang, X.-W. Feng, K. Li, X.-Q. Yu, Promiscuous protease-catalyzed aldol reactions: A facile biocatalytic protocol for carbon–carbon bond formation in aqueous media, J. Biotechnol. 150 (2010) 539-545.
連結:
-
[46] H.-H. Li, Y.-H. He, Z. Guan, Protease-catalyzed direct aldol reaction, Catal. Commun. 12 (2011) 580-582.
連結:
-
[47] Z.-Q. Liu, Z.-W. Xiang, Z. Shen, Q. Wu, X.-F. Lin, Enzymatic enantioselective aldol reactions of isatin derivatives with cyclic ketones under solvent-free conditions, Biochimie 101 (2014) 156-160.
連結:
-
[48] M. López-Iglesias, E. Busto, V. Gotor, V. Gotor-Fernández, Use of Protease from Bacillus licheniformis as Promiscuous Catalyst for Organic Synthesis: Applications in C=C and C=N Bond Formation Reactions, Adv. Synth. Catal. 353 (2011) 2345-2353.
連結:
-
[49] B.-H. Xie, W. Li, Y. Liu, H.-H. Li, Z. Guan, Y.-H. He, The enzymatic asymmetric aldol reaction using acidic protease from Aspergillus usamii, Tetrahedron 68 (2012) 3160-3164.
連結:
-
[50] Z.-B. Xie, N. Wang, G.-F. Jiang, X.-Q. Yu, Biocatalytic asymmetric aldol reaction in buffer solution, Tetrahedron Lett. 54 (2013) 945-948.
連結:
-
[51] Z.-B. Xie, N. Wang, L.-H. Zhou, F. Wan, T. He, Z.-G. Le, X.-Q. Yu, Lipase-Catalyzed Stereoselective Cross-Aldol Reaction Promoted by Water, ChemCatChem 5 (2013) 1935-1940.
連結:
-
[52] W.-B. Wu, N. Wang, J.-M. Xu, Q. Wu, X.-F. Lin, Penicillin G acylase catalyzed Markovnikov addition of allopurinol to vinyl ester, Chem. Comm. (2005) 2348-2350.
連結:
-
[53] W.-B. Wu, J.-M. Xu, Q. Wu, D.-S. Lv, X.-F. Lin, Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media, Adv. Synth. Catal. 348 (2006) 487-492.
連結:
-
[54] M.T. Reetz, R. Mondière, J.D. Carballeira, Enzyme promiscuity: first protein-catalyzed Morita–Baylis–Hillman reaction, Tetrahedron Lett. 48 (2007) 1679-1681.
連結:
-
[55] Z. Guan, J. Song, Y. Xue, D.-C. Yang, Y.-H. He, Enzyme-catalyzed asymmetric Mannich reaction using acylase from Aspergillus melleus, J. Mol. Catal. B Enzym. 111 (2015) 16-20.
連結:
-
[56] Y. Xue, L.-P. Li, Y.-H. He, Z. Guan, Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent, Sci. Rep. 2 (2012) 761.
連結:
-
[57] J.-F. Cai, Z. Guan, Y.-H. He, The lipase-catalyzed asymmetric C–C Michael addition, J. Mol. Catal. B Enzym. 68 (2011) 240-244.
連結:
-
[58] B.-H. Xie, Z. Guan, Y.-H. He, Promiscuous enzyme-catalyzed Michael addition: synthesis of warfarin and derivatives, J. Chem. Technol. Biotechnol. 87 (2012) 1709-1714.
連結:
-
[59] R.K.O. Sigel, A.M. Pyle, Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry, Chem. Rev. 107 (2007) 97-113.
連結:
-
[60] C.M. Thomas, T.R. Ward, Artificial metalloenzymes: proteins as hosts for enantioselective catalysis, Chem. Soc. Rev. 34 (2005) 337-346.
連結:
-
[61] T.R. Ward, Artificial Metalloenzymes Based on the Biotin−Avidin Technology: Enantioselective Catalysis and Beyond, Accounts of Chemical Research 44 (2011) 47-57.
連結:
-
[62] P.P. Bora, M. Bihani, G. Bez, Beyond enzymatic promiscuity: asymmetric induction by l-proline on lipase catalyzed synthesis of polyfunctionalized 4H-pyrans, RSC Adv. 5 (2015) 50597-50603.
連結:
-
[63] B. List, R.A. Lerner, C.F. Barbas, Proline-Catalyzed Direct Asymmetric Aldol Reactions, J. Am. Chem. Soc. 122 (2000) 2395-2396.
連結:
-
[64] F. Hakiminia, B. Ranjbar, K. Khalifeh, k. khajeh, Kinetic and thermodynamic properties of pseudomonas fluorescence lipase upon addition of proline, Int. J. Biol. Macromolec. 55 (2013) 123-126.
連結:
-
[65] H. Hiroyuki, A. Tsutomu, S. Kentaro, Effect of Additives on Protein Aggregation, Curr. Pharm. Biotechnol. 10 (2009) 400-407.
連結:
-
[66] S.-H. Kim, Y.-B. Yan, H.-M. Zhou, Role of osmolytes as chemical chaperones during the refolding of aminoacylase, Biochem. Cell Biol. 84 (2006) 30-38.
連結:
-
[67] T.K.S. Kumat, D. Samuel, G. Jayaraman, T. Srimathi, C. Yu, The role of proline in the prevention of aggregation during protein folding in vitro, IUBMB Life 46 (1998) 509-517.
連結:
-
[68] F.-G. Meng, Y.-D. Park, H.-M. Zhou, Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase, Int. J. Biochem. Cell Biol. 33 (2001) 701-709.
連結:
-
[69] P. Adlercreutz, Immobilisation and application of lipases in organic media, Chem. Soc. Rev. 42 (2013) 6406-6436.
連結:
-
[70] N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Enzymes immobilized in mesoporous silica: A physical–chemical perspective, Adv. Colloid Interface Sci. 205 (2014) 339-360.
連結:
-
[71] Y. Chen, S. Han, X. Li, Z. Zhang, S. Ma, Why Does Enzyme Not Leach from Metal–Organic Frameworks (MOFs)? Unveiling the Interactions between an Enzyme Molecule and a MOF, Inorg. Chem. 53 (2014) 10006-10008.
連結:
-
[72] Y. Chen, V. Lykourinou, T. Hoang, L.-J. Ming, S. Ma, Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes, Inorg. Chem. 51 (2012) 9156-9158.
連結:
-
[73] V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R.L. Musselman, S. Ma, Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis, J. Am. Chem. Soc. 133 (2011) 10382-10385.
連結:
-
[74] D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei, W. Wan, D. Yuan, Y.-P. Chen, X. Wang, K. Wang, X. Lian, Z.-Y. Gu, J. Park, X. Zou, H.-C. Zhou, Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation, Nature Commun. 6 (2015) 5979.
連結:
-
[75] P. Li, S.-Y. Moon, M.A. Guelta, S.P. Harvey, J.T. Hupp, O.K. Farha, Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability, J. Am. Chem. Soc. 138 (2016) 8052-8055.
連結:
-
[76] P. Li, S.-Y. Moon, M.A. Guelta, L. Lin, D.A. Gómez-Gualdrón, R.Q. Snurr, S.P. Harvey, J.T. Hupp, O.K. Farha, Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis, ACS Nano 10 (2016) 9174-9182.
連結:
-
[77] X. Lian, Y.-P. Chen, T.-F. Liu, H.-C. Zhou, Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF, Chem. Sci. 7 (2016) 6969-6973.
連結:
-
[78] K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation, Chem. Comm. 52 (2016) 473-476.
連結:
-
[79] K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nature Commun. 6 (2015) 7240.
連結:
-
[80] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities, Nano Lett. 14 (2014) 5761-5765.
連結:
-
[81] S. Patra, T. Hidalgo Crespo, A. Permyakova, C. Sicard, C. Serre, A. Chausse, N. Steunou, L. Legrand, Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform, J. Mater. Chem. B 3 (2015) 8983-8992.
連結:
-
[82] F.-K. Shieh, S.-C. Wang, C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J.V. Morabito, P. Hu, M.-H. Hsu, K.C.W. Wu, C.-K. Tsung, Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals, J. Am. Chem. Soc. 137 (2015) 4276-4279.
連結:
-
[83] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Comm. 51 (2015) 13408-13411.
連結:
-
[84] S.-L. Cao, D.-M. Yue, X.-H. Li, T.J. Smith, N. Li, M.-H. Zong, H. Wu, Y.-Z. Ma, W.-Y. Lou, Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH2 MOF for Efficient Biosynthesis of Enantiopure (R)-1, 2-Octanediol in Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 4 (2016) 3586-3595.
連結:
-
[85] Y. Cao, Z. Wu, T. Wang, Y. Xiao, Q. Huo, Y. Liu, Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification, Dalton Trans. 45 (2016) 6998-7003.
連結:
-
[86] W.-L. Liu, N.-S. Yang, Y.-T. Chen, S. Lirio, C.-Y. Wu, C.-H. Lin, H.-Y. Huang, Lipase-Supported Metal–Organic Framework Bioreactor Catalyzes Warfarin Synthesis, Chem. Eur. J. 21 (2015) 115-119.
連結:
-
[87] W. Ma, Q. Jiang, P. Yu, L. Yang, L. Mao, Zeolitic Imidazolate Framework-Based Electrochemical Biosensor for in Vivo Electrochemical Measurements, Anal. Chem. 85 (2013) 7550-7557.
連結:
-
[88] S. Patra, S. Sene, C. Mousty, C. Serre, A. Chaussé, L. Legrand, N. Steunou, Design of Laccase–Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction, ACS App. Mater. Interfaces 8 (2016) 20012-20022.
連結:
-
[89] M. Zhao, X. Zhang, C. Deng, Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion, Chem. Comm. 51 (2015) 8116-8119.
連結:
-
[90] S. Jung, Y. Kim, S.-J. Kim, T.-H. Kwon, S. Huh, S. Park, Bio-functionalization of metal-organic frameworks by covalent protein conjugation, Chem. Comm. 47 (2011) 2904-2906.
連結:
-
[91] Y.-H. Shih, S.-H. Lo, N.-S. Yang, B. Singco, Y.-J. Cheng, C.-Y. Wu, I.H. Chang, H.-Y. Huang, C.-H. Lin, Trypsin-Immobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis, ChemPlusChem 77 (2012) 982-986.
連結:
-
[92] W. Wang, L. Wang, Y. Huang, Z. Xie, X. Jing, Nanoscale Metal–Organic Framework–Hemoglobin Conjugates, Asian Chem. J. 11 (2016) 750-756.
連結:
-
[93] X. Wang, T.A. Makal, H.-C. Zhou, Protein Immobilization in Metal–Organic Frameworks by Covalent Binding, Aust. J. Chem. 67 (2014) 1629-1631.
連結:
-
[94] L. Wen, A. Gao, Y. Cao, F. Svec, T. Tan, Y. Lv, Layer-by-Layer Assembly of Metal–Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization, Macromol. Rapid Commun. 37 (2016) 551-557.
連結:
-
[95] W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang, C.-H. Lin, Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion, J. Mater. Chem. B 1 (2013) 928-932.
連結:
-
[96] W.-L. Liu, C.-Y. Wu, C.-Y. Chen, B. Singco, C.-H. Lin, H.-Y. Huang, Fast Multipoint Immobilized MOF Bioreactor, Chem. Euro. J. 20 (2014) 8923-8928.
連結:
-
[97] M. Banerjee, S. Das, M. Yoon, H.J. Choi, M.H. Hyun, S.M. Park, G. Seo, K. Kim, Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal−Organic Porous Materials, J. Am. Chem. Soc. 131 (2009) 7524-7525.
連結:
-
[98] W. Zhu, C. He, P. Wu, X. Wu, C. Duan, "Click" post-synthetic modification of metal-organic frameworks with chiral functional adduct for heterogeneous asymmetric catalysis, Dalton Trans. 41 (2012) 3072-3077.
連結:
-
[99] J. Janaun, N. Ellis, Perspectives on biodiesel as a sustainable fuel, Renew. Sustainable Energy Rev. 14 (2010) 1312-1320.
連結:
-
[100] S. Semwal, A.K. Arora, R.P. Badoni, D.K. Tuli, Biodiesel production using heterogeneous catalysts, Bioresour. Technol. 102 (2011) 2151-2161.
連結:
-
[101] A.P.S. Chouhan, A.K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review, Renew. Sustainable Energy Rev. 15 (2011) 4378-4399.
連結:
-
[102] A.F. Lee, J.A. Bennett, J.C. Manayil, K. Wilson, Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification, Chem. Soc. Rev. 43 (2014) 7887-7916.
連結:
-
[103] M. Zabeti, W.M.A. Wan Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Processing Technol. 90 (2009) 770-777.
連結:
-
[104] A.L. de Lima, C.M. Ronconi, C.J.A. Mota, Heterogeneous basic catalysts for biodiesel production, Catal. Sci. Tech. 6 (2016) 2877-2891.
連結:
-
[105] D.-W. Lee, Y.-M. Park, K.-Y. Lee, Heterogeneous Base Catalysts for Transesterification in Biodiesel Synthesis, Catal. Surv. Asia 13 (2009) 63-77.
連結:
-
[106] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel 90 (2011) 1309-1324.
連結:
-
[107] F. Su, Y. Guo, Advancements in solid acid catalysts for biodiesel production, Green Chem. 16 (2014) 2934-2957.
連結:
-
[108] A.A. Refaat, Biodiesel production using solid metal oxide catalysts, Int. J. Environ. Sci. Technol. 8 (2011) 203-221.
連結:
-
[109] F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest, Catal. Today 257, Part 2 (2015) 213-220.
連結:
-
[110] F. Zhou, N. Lu, B. Fan, H. Wang, R. Li, Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol, J. Energy Chem. 25 (2016) 874-879.
連結:
-
[111] M. Martínez-Huelamo, E. Jiménez-Gámez, M.P. Hermo, D. Barrón, J. Barbosa, Determination of penicillins in milk using LC-UV, LC-MS and LC-MS/MS, J. Sep. Sci. 32 (2009) 2385-2393.
連結:
-
[112] B. Chen, M. Ma, X. Su, An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode, Anal. Chim. Acta 674 (2010) 89-95.
連結:
-
[113] A.A.M. Stolker, U.A.T. Brinkman, Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review, J. Chromatogr. A 1067 (2005) 15-53.
連結:
-
[115] C. Cháfer-Pericás, Á. Maquieira, R. Puchades, Fast screening methods to detect antibiotic residues in food samples, TrAC Trends Anal. Chem. 29 (2010) 1038-1049.
連結:
-
[116] L. Kantiani, M. Farré, D. Barceló, D. Barceló, Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples, TrAC Trends Anal. Chem. 28 (2009) 729-744.
連結:
-
[117] M.I. Bailón-Pérez, A.M. García-Campaña, M. del Olmo-Iruela, L. Gámiz-Gracia, C. Cruces-Blanco, Trace determination of 10 β-lactam antibiotics in environmental and food samples by capillary liquid chromatography, J. Chromatogr. A 1216 (2009) 8355-8361.
連結:
-
[118] F. Bruno, R. Curini, A.D. Corcia, M. Nazzari, R. Samperi, Solid-Phase Extraction Followed by Liquid Chromatography−Mass Spectrometry for Trace Determination of β-Lactam Antibiotics in Bovine Milk, J. Agric. Food Chem. 49 (2001) 3463-3470.
連結:
-
[119] E.N. Evaggelopoulou, V.F. Samanidou, Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus Aurata) tissue according to the European Union Decision 2002/657/EC, Food Chem. 136 1322-1329.
連結:
-
[120] M. Gros, S. Rodríguez-Mozaz, D. Barceló, Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr. A 1292 (2013) 173-188.
連結:
-
[121] J. Yin, Z. Meng, M. Du, C. Liu, M. Song, H. Wang, Pseudo-template molecularly imprinted polymer for selective screening of trace β-lactam antibiotics in river and tap water, J. Chromatogr.A 1217 (2010) 5420-5426.
連結:
-
[122] H. Kataoka, SPME techniques for biomedical analysis, Bioanalysis 7 (2015) 2135-2144.
連結:
-
[123] K. Jinno, M. Ogawa, I. Ueta, Y. Saito, Miniaturized sample preparation using a fiber-packed capillary as the medium, TrAC, Trends Anal. Chem. 26 (2007) 27-35.
連結:
-
[124] D.-Y. Lyu, C.-X. Yang, X.-P. Yan, Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples, J. Chromatogr. A 1393 (2015) 1-7.
連結:
-
[125] S. Ma, H.-C. Zhou, A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity, J. Am. Chem. Soc. 128 (2006) 11734-11735.
連結:
-
[126] H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, Science 327 (2010) 846.
連結:
-
[127] M. Kim, J.F. Cahill, K.A. Prather, S.M. Cohen, Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks, Chem. Comm. 47 (2011) 7629-7631.
連結:
-
[128] Y.-F. Song, L. Cronin, Postsynthetic Covalent Modification of Metal–Organic Framework (MOF) Materials, Angew. Chem. Int. Ed. 47 (2008) 4635-4637.
連結:
-
[129] Z. Wang, S.M. Cohen, Tandem Modification of Metal–Organic Frameworks by a Postsynthetic Approach, Angew. Chem. Int. Ed. 47 (2008) 4699-4702.
連結:
-
[130] Y.-B. Zhang, H. Furukawa, N. Ko, W. Nie, H.J. Park, S. Okajima, K.E. Cordova, H. Deng, J. Kim, O.M. Yaghi, Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177, J. Am. Chem. Soc. 137 (2015) 2641-2650.
連結:
-
[131] S. Huh, H.-T. Chen, J.W. Wiench, M. Pruski, V.S.Y. Lin, Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres, Angew. Chem. Int. Ed. 44 (2005) 1826-1830.
連結:
-
[132] K.M. Koeller, C.-H. Wong, Synthesis of Complex Carbohydrates and Glycoconjugates: Enzyme-Based and Programmable One-Pot Strategies, Chem. Rev. 100 (2000) 4465-4494.
連結:
-
[133] N.R. Shiju, A.H. Alberts, S. Khalid, D.R. Brown, G. Rothenberg, Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions, Angew. Chem. Int. Ed. 50 (2011) 9615-9619.
連結:
-
[134] Y. Zhang, B. Li, S. Ma, Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis, Chem. Comm. 50 (2014) 8507-8510.
連結:
-
[135] S. Shylesh, A. Wagner, A. Seifert, S. Ernst, W.R. Thiel, Cooperative Acid–Base Effects with Functionalized Mesoporous Silica Nanoparticles: Applications in Carbon–Carbon Bond-Formation Reactions, Chem. Eur. J. 15 (2009) 7052-7062.
連結:
-
[136] R. Srirambalaji, S. Hong, R. Natarajan, M. Yoon, R. Hota, Y. Kim, Y. Ho Ko, K. Kim, Tandem catalysis with a bifunctional site-isolated Lewis acid-Bronsted base metal-organic framework, NH2-MIL-101(Al), Chem. Comm. 48 (2012) 11650-11652.
連結:
-
[137] F. Vermoortele, R. Ameloot, A. Vimont, C. Serre, D. De Vos, An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation, Chem. Comm. 47 (2011) 1521-1523.
連結:
-
[138] X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage, J. Am. Chem. Soc. 133 (2011) 11822-11825.
連結:
-
[139] J. Hermannsdörfer, M. Friedrich, N. Miyajima, R.Q. Albuquerque, S. Kümmel, R. Kempe, Ni/Pd@MIL-101: Synergistic Catalysis with Cavity-Conform Ni/Pd Nanoparticles, Angew. Chem. Int. Ed. 51 (2012) 11473-11477.
連結:
-
[140] H.-L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework, J. Am. Chem. Soc. 133 (2011) 1304-1306.
連結:
-
[141] F. Schröder, S. Henke, X. Zhang, R.A. Fischer, Simultaneous Gas-Phase Loading of MOF-5 with Two Metal Precursors: towards Bimetallics@MOF, Eur. J. Inorg. Chem. 2009 (2009) 3131-3140.
連結:
-
[142] J. Li, Q.-L. Zhu, Q. Xu, Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane, Chem. Comm. 50 (2014) 5899-5901.
連結:
-
[143] Q.-L. Zhu, J. Li, Q. Xu, Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance, J. Am. Chem. Soc. 135 (2013) 10210-10213.
連結:
-
[144] N. Cao, J. Su, W. Luo, G. Cheng, Ni–Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage, Int. J. Hydrogen Energy 39 (2014) 9726-9734.
連結:
-
[145] H. Dai, N. Cao, L. Yang, J. Su, W. Luo, G. Cheng, AgPd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid, J. Mat. Chem. A 2 (2014) 11060-11064.
連結:
-
[146] H. Dai, B. Xia, L. Wen, C. Du, J. Su, W. Luo, G. Cheng, Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid, Appl. Catal. B 165 (2015) 57-62.
連結:
-
[147] F. Ke, L. Wang, J. Zhu, Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability, Nanoscale 7 (2015) 1201-1208.
連結:
-
[148] Y.-Z. Chen, Q. Xu, S.-H. Yu, H.-L. Jiang, Tiny Pd@Co Core–Shell Nanoparticles Confined inside a Metal–Organic Framework for Highly Efficient Catalysis, Small 11 (2015) 71-76.
連結:
-
[149] F.G. Cirujano, F.X. Llabres i Xamena, A. Corma, MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst, Dalton Trans. 41 (2012) 4249-4254.
連結:
-
[150] X. Li, Z. Guo, C. Xiao, T.W. Goh, D. Tesfagaber, W. Huang, Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks, ACS Catal. 4 (2014) 3490-3497.
連結:
-
[151] Y. Pan, B. Yuan, Y. Li, D. He, Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework, Chem. Comm. 46 (2010) 2280-2282.
連結:
-
[152] C. Wang, K.E. deKrafft, W. Lin, Pt Nanoparticles@Photoactive Metal–Organic Frameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and Electron Injection, J. Am. Chem. Soc. 134 (2012) 7211-7214.
連結:
-
[153] M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, Z. Tang, Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions, J. Am. Chem. Soc. 136 (2014) 1738-1741.
連結:
-
[154] Q. Han, C. He, M. Zhao, B. Qi, J. Niu, C. Duan, Engineering Chiral Polyoxometalate Hybrid Metal–Organic Frameworks for Asymmetric Dihydroxylation of Olefins, J. Am. Chem. Soc. 135 (2013) 10186-10189.
連結:
-
[155] Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework, J. Phys. Chem. C 116 (2012) 20848-20853.
連結:
-
[156] L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst, Nanoscale 5 (2013) 9374-9382.
連結:
-
[157] D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Noble Metals Can Have Different Effects on Photocatalysis Over Metal–Organic Frameworks (MOFs): A Case Study on M/NH2-MIL-125(Ti) (M=Pt and Au), Chem. Eur. J. 20 (2014) 4780-4788.
連結:
-
[158] B. Li, M. Chrzanowski, Y. Zhang, S. Ma, Applications of metal-organic frameworks featuring multi-functional sites, Coord. Chem. Rev. 307, Part 2 (2016) 106-129.
連結:
-
[159] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477-1504.
連結:
-
[161] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–Organic Framework Materials as Chemical Sensors, Chem. Rev. 112 (2012) 1105-1125.
連結:
-
[162] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404 (2000) 982-986.
連結:
-
[163] H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, C.-H. Lin, Metal organic framework–organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography, Anal. Chim. Acta 779 (2013) 96-103.
連結:
-
[164] Y.H. Shih, B. Singco, W.L. Liu, C.H. Hsu, H.Y. Huang, A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization, Green Chem. 13 (2011) 296-299.
連結:
-
[165] B. Singco, C.L. Lin, Y.J. Cheng, Y.H. Shih, H.Y. Huang, Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application, Anal. Chim. Acta 746 (2012) 123-133.
連結:
-
[166] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485 (2012) 185-194.
連結:
-
[168] A. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Industrial biocatalysis today and tomorrow, Nature 409 (2001) 258-268.
連結:
-
[169] G. Carrea, S. Riva, Properties and Synthetic Applications of Enzymes in Organic Solvents, Angew. Chem. Int. Ed. 39 (2000) 2226-2254.
連結:
-
[170] Z. Guan, L.-Y. Li, Y.-H. He, Hydrolase-catalyzed asymmetric carbon-carbon bond formation in organic synthesis, RSC Adv. 5 (2015) 16801-16814.
連結:
-
[171] M.M. Green, Witcoff, H.A., Organic Chemistry Principles and Industrial Practice, Wiley-VCH, Weinheim (2003).
連結:
-
[172] R. Mestres, A green look at the aldol reaction, Green Chem. 6 (2004) 583-603.
連結:
-
[173] C.M. Clouthier, J.N. Pelletier, Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis, Chem. Soc. Rev. 41 (2012) 1585-1605.
連結:
-
[174] C.K. Prier, F.H. Arnold, Chemomimetic Biocatalysis: Exploiting the Synthetic Potential of Cofactor-Dependent Enzymes To Create New Catalysts, J. Am. Chem. Soc. 137 (2015) 13992-14006.
連結:
-
[175] M.E. Wilson, G.M. Whitesides, Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety, J. Am. Chem. Soc. 100 (1978) 306-307.
連結:
-
[176] C. Letondor, N. Humbert, T.R. Ward, Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 4683-4687.
連結:
-
[177] M. Dürrenberger, T. Heinisch, Y.M. Wilson, T. Rossel, E. Nogueira, L. Knörr, A. Mutschler, K. Kersten, M.J. Zimbron, J. Pierron, T. Schirmer, T.R. Ward, Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines, Angew. Chem. Int. Ed. 50 (2011) 3026-3029.
連結:
-
[178] T.K. Hyster, L. Knörr, T.R. Ward, T. Rovis, Biotinylated Rh(III) Complex in Engineered Streptavidin for Accelerated Asymmetric C-H Activation, Science 338 (2012) 10.1126/science.1226132.
連結:
-
[179] T. Heinisch, M. Pellizzoni, M. Dürrenberger, C.E. Tinberg, V. Köhler, J. Klehr, D. Häussinger, D. Baker, T.R. Ward, Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design, J. Am. Chem. Soc. 137 (2015) 10414-10419.
連結:
-
[180] Y. Zhang, W.-X. Feng, Y.-M. Legrand, C.T. Supuran, C.-Y. Su, M. Barboiu, Dynameric host frameworks for the activation of lipase through H-bond and interfacial encapsulation, Chem. Comm. 52 (2016) 13768-13770.
連結:
-
[181] S. Boschi-Muller, S. Muller, A. Van Dorsselaer, A. Böck, G. Branlant, Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity, FEBS Letters 439 (1998) 241-245.
連結:
-
[182] H.-j. Yu, J.-q. Liu, A. Böck, J. Li, G.-m. Luo, J.-c. Shen, Engineering Glutathione Transferase to a Novel Glutathione Peroxidase Mimic With High Catalytic Efficiency: Incoroporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system, J. Biol. Chem. 280 (2005) 11930-11935.
連結:
-
[183] A.M. Klibanov, Improving enzymes by using them in organic solvents, Nature 409 (2001) 241-246.
連結:
-
[184] L. Cao, L.v. Langen, R.A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free?, Curr. Opin. Biotechnol. 14 (2003) 387-394.
連結:
-
[185] P.V. Iyer, L. Ananthanarayan, Enzyme stability and stabilization—Aqueous and non-aqueous environment, Process Biochem. 43 (2008) 1019-1032.
連結:
-
[186] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme and Micro. Technol. 40 (2007) 1451-1463.
連結:
-
[187] R.C. Rodrigues, C. Ortiz, A. Berenguer-Murcia, R. Torres, R. Fernandez-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42 (2013) 6290-6307.
連結:
-
[188] C. Spahn, S.D. Minteer, Enzyme immobilization in biotechnology, Recent Pat. Eng. 2 (2008) 195-200.
連結:
-
[190] J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates, Coord. Chem. Rev. 322 (2016) 30-40.
連結:
-
[191] E. Gkaniatsou, C. Sicard, R. Ricoux, J.-P. Mahy, N. Steunou, C. Serre, Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection, Mater. Horiz. 4 (2017) 55-63.
連結:
-
[192] A.L.W. Demuynck, M.G. Goesten, E.V. Ramos-Fernandez, M. Dusselier, J. Vanderleyden, F. Kapteijn, J. Gascon, B.F. Sels, Induced Chirality in a Metal–Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions, ChemCatChem 6 (2014) 2211-2214.
連結:
-
[193] J. Bonnefoy, A. Legrand, E.A. Quadrelli, J. Canivet, D. Farrusseng, Enantiopure Peptide-Functionalized Metal–Organic Frameworks, J. Am. Chem. Soc. 137 (2015) 9409-9416.
連結:
-
[194] L. Lili, Z. Xin, R. Shumin, Y. Ying, D. Xiaoping, G. Jinsen, X. Chunming, H. Jing, Catalysis by metal-organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions, RSC Adv. 4 (2014) 13093-13107.
連結:
-
[195] J. Canivet, D. Farrusseng, Proline-functionalized metal-organic frameworks and their use in asymmetric catalysis: pitfalls in the MOFs rush, RSC Adv. 5 (2015) 11254-11256.
連結:
-
[196] J. Coste, E. Frerot, P. Jouin, Coupling N-Methylated Amino Acids Using PyBroP and PyCloP Halogenophosphonium Salts: Mechanism and Fields of Application, J. Org. Chem. 59 (1994) 2437-2446.
連結:
-
[197] E. Frérot, J. Coste, A. Pantaloni, M.-N. Dufour, P. Jouin, PyBOP® and PyBroP: Two reagents for the difficult coupling of the α,α-dialkyl amino acid, Aib, Tetrahedron 47 (1991) 259-270.
連結:
-
[198] C.A.G.N. Montalbetti, V. Falque, Amide bond formation and peptide coupling, Tetrahedron 61 (2005) 10827-10852.
連結:
-
[199] T. Mukaiyama, New Synthetic Reactions Based on the Onium Salts of Aza-Arenes [New synthetic methods(29)], Angew. Chem. Int. Ed. 18 (1979) 707-721.
連結:
-
[200] L.P. Christopher, K. Hemanathan, V.P. Zambare, Enzymatic biodiesel: Challenges and opportunities, Appl. Energy 119 (2014) 497-520.
連結:
-
[201] A. Gog, M. Roman, M. Toşa, C. Paizs, F.D. Irimie, Biodiesel production using enzymatic transesterification – Current state and perspectives, Renew. Energy 39 (2012) 10-16.
連結:
-
[202] S. Hama, A. Kondo, Enzymatic biodiesel production: An overview of potential feedstocks and process development, Bioresour. Technol. 135 (2013) 386-395.
連結:
-
[203] S.V. Ranganathan, S.L. Narasimhan, K. Muthukumar, An overview of enzymatic production of biodiesel, Bioresour. Technol. 99 (2008) 3975-3981.
連結:
-
[204] M. Szczęsna Antczak, A. Kubiak, T. Antczak, S. Bielecki, Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process, Renew. Energy 34 (2009) 1185-1194.
連結:
-
[205] M. Verziu, S.M. Coman, R. Richards, V.I. Parvulescu, Transesterification of vegetable oils over CaO catalysts, Catal. Today 167 (2011) 64-70.
連結:
-
[206] M. Di Serio, R. Tesser, L. Casale, A. D’Angelo, M. Trifuoggi, E. Santacesaria, Heterogeneous Catalysis in Biodiesel Production: The Influence of Leaching, Top. Catal. 53 (2010) 811-819.
連結:
-
[207] M. López Granados, D. Martín Alonso, A.C. Alba-Rubio, R. Mariscal, M. Ojeda, P. Brettes, Transesterification of Triglycerides by CaO: Increase of the Reaction Rate by Biodiesel Addition, Energy Fuels 23 (2009) 2259-2263.
連結:
-
[208] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production, Fuel 87 (2008) 2798-2806.
連結:
-
[209] H. Jeon, D.J. Kim, S.J. Kim, J.H. Kim, Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production, Fuel Process. Technol. 116 (2013) 325-331.
連結:
-
[210] J.M. Montero, P. Gai, K. Wilson, A.F. Lee, Structure-sensitive biodiesel synthesis over MgO nanocrystals, Green Chem. 11 (2009) 265-268.
連結:
-
[211] M. Verziu, B. Cojocaru, J. Hu, R. Richards, C. Ciuculescu, P. Filip, V.I. Parvulescu, Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts, Green Chem. 10 (2008) 373-381.
連結:
-
[212] N. Kaur, A. Ali, Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil, Fuel Process. Technol. 119 (2014) 173-184.
連結:
-
[213] C.S. MacLeod, A.P. Harvey, A.F. Lee, K. Wilson, Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production, Chem. Eng. J. 135 (2008) 63-70.
連結:
-
[214] R.S. Watkins, A.F. Lee, K. Wilson, Li-CaO catalysed tri-glyceride transesterification for biodiesel applications, Green Chem. 6 (2004) 335-340.
連結:
-
[215] J.M. Montero, K. Wilson, A.F. Lee, Cs Promoted Triglyceride Transesterification Over MgO Nanocatalysts, Top. Catal. 53 (2010) 737-745.
連結:
-
[216] J.J. Woodford, C.M.A. Parlett, J.-P. Dacquin, G. Cibin, A. Dent, J. Montero, K. Wilson, A.F. Lee, Identifying the active phase in Cs-promoted MgO nanocatalysts for triglyceride transesterification, J. Chem. Technol. Biotechnol. 89 (2014) 73-80.
連結:
-
[217] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J.D. Méndez Díaz, M.S. Polo, J.R. Utrilla, Selection of heterogeneous catalysts for biodiesel production from animal fat, Fuel 94 (2012) 418-425.
連結:
-
[218] N. Santiago-Torres, I.C. Romero-Ibarra, H. Pfeiffer, Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production, Fuel Process. Technol. 120 (2014) 34-39.
連結:
-
[219] A. Molaei Dehkordi, M. Ghasemi, Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts, Fuel Process. Technol. 97 (2012) 45-51.
連結:
-
[220] Y.H. Taufiq-Yap, H.V. Lee, R. Yunus, J.C. Juan, Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca–Mg mixed oxide catalyst: Effect of stoichiometric composition, Chem. Eng. J. 178 (2011) 342-347.
連結:
-
[221] B. Smit, T.L.M. Maesen, Towards a molecular understanding of shape selectivity, Nature 451 (2008) 671-678.
連結:
-
[222] O. Babajide, N. Musyoka, L. Petrik, F. Ameer, Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production, Catal. Today 190 (2012) 54-60.
連結:
-
[223] H. Wu, J. Zhang, Q. Wei, J. Zheng, J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts, Fuel Process. Technol. 109 (2013) 13-18.
連結:
-
[224] L.D. Borges, N.N. Moura, A.A. Costa, P.R.S. Braga, J.A. Dias, S.C.L. Dias, J.L. de Macedo, G.F. Ghesti, Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: Influence of structural and acidity parameters, Appl. Catal. A. 450 (2013) 114-119.
連結:
-
[225] C.S. Castro, D. Cardoso, P.A.P. Nascente, J.M. Assaf, MgAlLi Mixed Oxides Derived from Hydrotalcite for Catalytic Transesterification, Catal. Lett. 141 (2011) 1316.
連結:
-
[226] H.J. Alves, A.M. da Rocha, M.R. Monteiro, C. Moretti, M.D. Cabrelon, C.A. Schwengber, M.C. Milinsk, Treatment of clay with KF: New solid catalyst for biodiesel production, Appl. Clay Sci. 91–92 (2014) 98-104.
連結:
-
[227] J.F.P. Gomes, J.F.B. Puna, L.M. Gonçalves, J.C.M. Bordado, Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production, Energy 36 (2011) 6770-6778.
連結:
-
[228] Z. Helwani, N. Aziz, M.Z.A. Bakar, H. Mukhtar, J. Kim, M.R. Othman, Conversion of Jatropha curcas oil into biodiesel using re-crystallized hydrotalcite, Energ. Convers. Manage. 73 (2013) 128-134.
連結:
-
[229] C.S. Cordeiro, F.R.d. Silva, F. Wypych, L.P. Ramos, Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel), Quím. Nova 34 (2011) 477-486.
連結:
-
[230] Y. Li, F. Qiu, D. Yang, X. Li, P. Sun, Preparation, characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil, Biomass Bioenergy 35 (2011) 2787-2795.
連結:
-
[231] D. Salinas, P. Araya, S. Guerrero, Study of potassium-supported TiO2 catalysts for the production of biodiesel, Appl. Catal. B 117–118 (2012) 260-267.
連結:
-
[232] A. Corma, Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev. 95 (1995) 559-614.
連結:
-
[233] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6024-6036.
連結:
-
[234] W. Xie, L. Zhao, Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil, Energ. Convers. Manage. 79 (2014) 34-42.
連結:
-
[235] W. Xie, M. Fan, Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst, Chem. Eng. J. 239 (2014) 60-67.
連結:
-
[236] E.A. Faria, H.F. Ramalho, J.S. Marques, P.A.Z. Suarez, A.G.S. Prado, Tetramethylguanidine covalently bonded onto silica gel surface as an efficient and reusable catalyst for transesterification of vegetable oil, Appl. Catal. A 338 (2008) 72-78.
連結:
-
[237] A.L. de Lima, A. Mbengue, R.A.S. San Gil, C.M. Ronconi, C.J.A. Mota, Synthesis of amine-functionalized mesoporous silica basic catalysts for biodiesel production, Catal. Today 226 (2014) 210-216.
連結:
-
[238] D. Meloni, R. Monaci, Z. Zedde, M.G. Cutrufello, S. Fiorilli, I. Ferino, Transesterification of soybean oil on guanidine base-functionalized SBA-15 catalysts, Appl. Catal. B 102 (2011) 505-514.
連結:
-
[239] U. Schuchardt, R. Sercheli, R.M. Vargas, Transesterification of vegetable oils: a review, J. Braz. Chem. Soc. 9 (1998) 199-210.
連結:
-
[240] D.P. Fabiano, B. Hamad, D. Cardoso, N. Essayem, On the understanding of the remarkable activity of template-containing mesoporous molecular sieves in the transesterification of rapeseed oil with ethanol, J. Catal. 276 (2010) 190-196.
連結:
-
[241] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Synthesis of Biodiesel via Acid Catalysis, Ind. Eng. Chem. Res. 44 (2005) 5353-5363.
連結:
-
[242] K. Suwannakarn, E. Lotero, J.G. Goodwin Jr, C. Lu, Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides, J. Catal. 255 (2008) 279-286.
連結:
-
[243] K. Arata, Organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds, Green Chem. 11 (2009) 1719-1728.
連結:
-
[244] X.-R. Chen, Y.-H. Ju, C.-Y. Mou, Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification, J. Phy. Chem. C 111 (2007) 18731-18737.
連結:
-
[245] D. Rattanaphra, A.P. Harvey, A. Thanapimmetha, P. Srinophakun, Kinetic of myristic acid esterification with methanol in the presence of triglycerides over sulfated zirconia, Renew. Energy 36 (2011) 2679-2686.
連結:
-
[246] B.M. Reddy, M.K. Patil, Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia, Chem. Rev. 109 (2009) 2185-2208.
連結:
-
[247] J. Ni, F.C. Meunier, Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors, Appl. Catal. A 333 (2007) 122-130.
連結:
-
[248] Y.-M. Park, J.Y. Lee, S.-H. Chung, I.S. Park, S.-Y. Lee, D.-K. Kim, J.-S. Lee, K.-Y. Lee, Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel, Bioresour. Technol. 101 (2010) S59-S61.
連結:
-
[249] I. Jiménez-Morales, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Calcined zirconium sulfate supported on MCM-41 silica as acid catalyst for ethanolysis of sunflower oil, Appl. Catal. B 103 (2011) 91-98.
連結:
-
[250] L. Guerreiro, J.E. Castanheiro, I.M. Fonseca, R.M. Martin-Aranda, A.M. Ramos, J. Vital, Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes, Catal. Today 118 (2006) 166-171.
連結:
-
[251] Y. Liu, E. Lotero, J.G. Goodwin Jr, A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis, J. Catal. 242 (2006) 278-286.
連結:
-
[252] T.A. Peters, N.E. Benes, A. Holmen, J.T.F. Keurentjes, Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol, Appl. Catal. A 297 (2006) 182-188.
連結:
-
[253] D. Chen, Z. Li, Y. Wan, X. Tu, Y. Shi, Z. Chen, W. Shen, C. Yu, B. Tu, D. Zhao, Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures, J. Mater. Chem.16 (2006) 1511-1519.
連結:
-
[254] L. Cao, T. Man, M. Kruk, Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As Micelle Expander, Chem. Mater. 21 (2009) 1144-1153.
連結:
-
[255] C. Pirez, J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification, ACS Catal. 2 (2012) 1607-1614.
連結:
-
[256] B. Chang, J. Fu, Y. Tian, X. Dong, Multifunctionalized Ordered Mesoporous Carbon as an Efficient and Stable Solid Acid Catalyst for Biodiesel Preparation, J. Phy. Chem. C 117 (2013) 6252-6258.
連結:
-
[257] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J.N. Kondo, S. Hayashi, K. Domen, A Carbon Material as a Strong Protonic Acid, Angew. Chem. Int. Ed. 43 (2004) 2955-2958.
連結:
-
[258] W.-Y. Lou, M.-H. Zong, Z.-Q. Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts, Bioresour. Technol. 99 (2008) 8752-8758.
連結:
-
[259] K. Nakajima, M. Hara, Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst, ACS Catal. 2 (2012) 1296-1304.
連結:
-
[260] M. Okamura, A. Takagaki, M. Toda, J.N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi, Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon, Chem. Mater. 18 (2006) 3039-3045.
連結:
-
[261] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups, J. Am.Chem. Soc.130 (2008) 12787-12793.
連結:
-
[262] M.-H. Zong, Z.-Q. Duan, W.-Y. Lou, T.J. Smith, H. Wu, Preparation of a sugar catalyst and its use for highly efficient production of biodiesel, Green Chem. 9 (2007) 434-437.
連結:
-
[263] Q. Guan, Y. Li, Y. Chen, Y. Shi, J. Gu, B. Li, R. Miao, Q. Chen, P. Ning, Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification, RSC Adv. 7 (2017) 7250-7258.
連結:
-
[264] M. Hara, Biodiesel Production by Amorphous Carbon Bearing SO3H, COOH and Phenolic OH Groups, a Solid Brønsted Acid Catalyst, Top. Catal. 53 (2010) 805-810.
連結:
-
[265] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.-S. Xiao, Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions, J. Mater. Chem. 22 (2012) 5495-5502.
連結:
-
[266] A.S. Rad, M.H. Nia, F. Ardestani, H. Nayebzadeh, Esterification of Waste Chicken Fat: Sulfonated MWCNT Toward Biodiesel Production, Waste Biomass Valori. (2016) 1-9.
連結:
-
[267] D.R. Stellwagen, F. van der Klis, D.S. van Es, K.P. de Jong, J.H. Bitter, Functionalized Carbon Nanofibers as Solid-Acid Catalysts for Transesterification, ChemSusChem 6 (2013) 1668-1672.
連結:
-
[268] A. Villa, J.-P. Tessonnier, O. Majoulet, D.S. Su, R. Schlögl, Transesterification of Triglycerides Using Nitrogen-Functionalized Carbon Nanotubes, ChemSusChem 3 (2010) 241-245.
連結:
-
[269] J. Alcañiz-Monge, G. Trautwein, J.P. Marco-Lozar, Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers, Appl. Catal. A 468 (2013) 432-441.
連結:
-
[270] V. Brahmkhatri, A. Patel, 12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids, Appl. Catal. A 403 (2011) 161-172.
連結:
-
[271] V. Brahmkhatri, A. Patel, Esterification of lauric acid with butanol-1 over H3PW12O40 supported on MCM-41, Fuel 102 (2012) 72-77.
連結:
-
[272] F. Cao, Y. Chen, F. Zhai, J. Li, J. Wang, X. Wang, S. Wang, W. Zhu, Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid, Biotechnol. Bioeng. 101 (2008) 93-100.
連結:
-
[273] I.V. Kozhevnikov, Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions, Chem. Rev. 98 (1998) 171-198.
連結:
-
[274] M.G. Kulkarni, R. Gopinath, L.C. Meher, A.K. Dalai, Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification, Green Chem. 8 (2006) 1056-1062.
連結:
-
[275] P. Morin, B. Hamad, G. Sapaly, M.G. Carneiro Rocha, P.G. Pries de Oliveira, W.A. Gonzalez, E. Andrade Sales, N. Essayem, Transesterification of rapeseed oil with ethanol: I. Catalysis with homogeneous Keggin heteropolyacids, Appl. Catal. A 330 (2007) 69-76.
連結:
-
[276] K. Narasimharao, D.R. Brown, A.F. Lee, A.D. Newman, P.F. Siril, S.J. Tavener, K. Wilson, Structure–activity relations in Cs-doped heteropolyacid catalysts for biodiesel production, J. Catal. 248 (2007) 226-234.
連結:
-
[277] I. Noshadi, N.A.S. Amin, R.S. Parnas, Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM), Fuel 94 (2012) 156-164.
連結:
-
[278] A. Patel, N. Narkhede, 12-Tungstophosphoric Acid Anchored to Zeolite Hβ: Synthesis, Characterization, and Biodiesel Production by Esterification of Oleic Acid with Methanol, Energy Fuels 26 (2012) 6025-6032.
連結:
-
[279] F. Su, L. Ma, Y. Guo, W. Li, Preparation of ethane-bridged organosilica group and keggin type heteropoly acid co-functionalized ZrO2 hybrid catalyst for biodiesel synthesis from eruca sativa gars oil, Catal. Sci. Tech. 2 (2012) 2367-2374.
連結:
-
[280] F. Su, L. Ma, D. Song, X. Zhang, Y. Guo, Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph)Si hybrid catalyst for methyl levulinate synthesis, Green Chem. 15 (2013) 885-890.
連結:
-
[281] F. Su, Q. Wu, D. Song, X. Zhang, M. Wang, Y. Guo, Pore morphology-controlled preparation of ZrO2-based hybrid catalysts functionalized by both organosilica moieties and Keggin-type heteropoly acid for the synthesis of levulinate esters, J. Mater. Chem. A 1 (2013) 13209-13221.
連結:
-
[282] L. Xu, W. Li, J. Hu, K. Li, X. Yang, F. Ma, Y. Guo, X. Yu, Y. Guo, Transesterification of soybean oil to biodiesel catalyzed by mesostructured Ta2O5-based hybrid catalysts functionalized by both alkyl-bridged organosilica moieties and Keggin-type heteropoly acid, J. Mater. Chem. 19 (2009) 8571-8579.
連結:
-
[283] L. Xu, W. Li, J. Hu, X. Yang, Y. Guo, Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalyst, Appl. Catal. B 90 (2009) 587-594.
連結:
-
[284] L. Xu, Y. Wang, X. Yang, J. Hu, W. Li, Y. Guo, Simultaneous esterification and transesterification of soybean oil with methanol catalyzed by mesoporous Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalysts, Green Chem. 11 (2009) 314-317.
連結:
-
[285] M. Misono, Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state, Chem. Comm. (2001) 1141-1152.
連結:
-
[286] K. Srilatha, T. Issariyakul, N. Lingaiah, P.S. Sai Prasad, J. Kozinski, A.K. Dalai, Efficient Esterification and Transesterification of Used Cooking Oil Using 12-Tungstophosphoric Acid (TPA)/Nb2O5 Catalyst, Energy Fuels 24 (2010) 4748-4755.
連結:
-
[287] F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs, Chem. Eng. Sci. 124 (2015) 52-60.
連結:
-
[288] I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W. Böhlmann, S. Kaskel, New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate), Microporous Mesoporous Mater. 122 (2009) 93-98.
連結:
-
[289] W.L. Liu, S.H. Lo, B. Singco, C.C. Yang, H.Y. Huang, C.H. Lin, Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion, J. Mater. Chem B 1 (2013) 928-932.
連結:
-
[290] T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, J. Senker, G. Férey, N. Stock, Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology, Inorg. Chem. 48 (2009) 3057-3064.
連結:
-
[291] A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen, M. Takata, Y. Kubota, S. Kitagawa, Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer, J. Am. Chem. Soc. 130 (2008) 13664-13672.
連結:
-
[292] M. Lin Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata, S. Kitagawa, Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66), Dalton Trans. 41 (2012) 13791-13794.
連結:
-
[293] Y. Kuwahara, H. Kango, H. Yamashita, Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to γ-Valerolactone over Sulfonic Acid-Functionalized UiO-66, ACS Sustain. Chem. Eng. 5 (2017) 1141-1152.
連結:
-
[294] M. Javanbakht, K.A. Pishro, A.H. Nasab, B. Akbari-adergani, Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers, Mater. Sci. Eng., C 32 (2012) 2367-2373.
連結:
-
[295] V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G. Amy, Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes, J. Membr. Sci. 342 (2009) 251-262.
連結:
-
[296] Y.S. Lee, J.H. Hong, N.Y. Jeon, K. Won, B.T. Kim, Highly Enantioselective Acylation of rac-Alkyl Lactates Using Candida antarctica Lipase B, Org. Process Res. Dev. 8 (2004) 948-951.
連結:
-
[297] P. Rallapalli, D. Patil, K.P. Prasanth, R. Somani, R.V. Jasra, H.C. Bajaj, An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate, MIL-53(Al), J. Porous. Mater. 17 (2010) 523-528.
連結:
-
[298] R. Eisert, J. Pawliszyn, Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography, Analytical Chemistry 69 (1997) 3140-3147.
連結:
-
[299] Y. Fan, Y.-Q. Feng, S.-L. Da, Z.-H. Wang, In-tube solid phase microextraction using a β-cyclodextrin coated capillary coupled to high performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in urine samples, Talanta 65 (2005) 111-117.
連結:
-
[300] M. Pera-Titus, D. Farrusseng, Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms, J. Phy. Chem. C 116 (2011) 1638-1649.
連結:
-
[301] M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju, U. Müller, The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications, Microporous Mesoporous Mater. 157 (2012) 131-136.
連結:
-
[302] G. Ferey, C. Serre, Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences, Chemical Society Reviews 38 (2009) 1380-1399.
連結:
-
[303] D.M. Simpson, R.J. Beynon, Acetone Precipitation of Proteins and the Modification of Peptides, J. Proteome Res. 9 (2010) 444-450.
連結:
-
[304] U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation, Chem. Soc. Rev. 38 (2009) 453-468.
連結:
-
[305] J.N. Talbert, J.M. Goddard, Enzymes on material surfaces, Colloids Surf., B 93 (2012) 8-19.
連結:
-
[306] Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent Functional Metal–Organic Frameworks, Chem. Rev. 112 (2012) 1126-1162.
連結:
-
[307] G.F.Z. da Silva, L.-J. Ming, Catechol Oxidase Activity of Di-Cu2+-Substituted Aminopeptidase from Streptomyces griseus, J. Am. Chem. Soc. 127 (2005) 16380-16381.
連結:
-
[308] E.T. Kaiser, D.S. Lawrence, Chemical mutation of enzyme active sites, Science 226 (1984) 505.
連結:
-
[309] I. Drienovska, A. Rioz-Martinez, A. Draksharapu, G. Roelfes, Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids, Chem. Sci. 6 (2015) 770-776.
連結:
-
[310] X. Shi, J. Liu, C. Li, Q. Yang, Pore-Size Tunable Mesoporous Zirconium Organophosphonates with Chiral l-Proline for Enzyme Adsorption, Inorg. Chem. 46 (2007) 7944-7952.
連結:
-
[311] L.J. Konwar, J. Wärnå, P. Mäki-Arvela, N. Kumar, J.-P. Mikkola, Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst, Fuel 166 (2016) 1-11.
連結:
-
References
-
[11] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276-279.
-
[26] M.D. Swayze, D.E. Riegner, M.A. Thomas, Z.T. Lachance, S.E. Kaplan, Am. Chem. Soc., 2011, p. CHED-281.
-
[114] C.R. 1831/2003/E.C., Off. J. Eur. Union 23 (1990) 1-136.
-
[160] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2010) 172-178.
-
[167] E.Z. Eisenmesser, O. Millet, W. Labeikovsky, D.M. Korzhnev, M. Wolf-Watz, D.A. Bosco, J.J. Skalicky, L.E. Kay, D. Kern, Intrinsic dynamics of an enzyme underlies catalysis, Nature 438 (2005) 117-121.
-
[189] B. Brena, P. González-Pombo, F. Batista-Viera, in: J.M. Guisan (Ed.), Immobilization of Enzymes and Cells: Third Edition, Humana Press, Totowa, NJ, 2013, p. 15-31.
|