题名

金屬有機骨架於固相微萃取、酵素固定化與生質能源之應用

并列篇名

Applications of Metal-Organic Frameworks in Solid-Phase Microextraction, Enzyme Immobilization, and Bioenergy

DOI

10.6840/cycu201700188

作者

李傑

关键词

金屬有機骨架材料 ; 固相微萃取 ; 酵素固定化 ; 生質能源 ; 異相催化劑 ; Metal-organic framework ; Solid-Phase Microextraction ; Enzyme Immobilization ; Bioenergy ; Heterogeneous Catalyst

期刊名称

中原大學化學系學位論文

卷期/出版年月

2017年

学位类别

博士

导师

黃悉雅

内容语文

英文

中文摘要

本論文以探討金屬有機骨架材料(metal-organic frameworks, MOFs)應用在分析化學、生物性催化劑、及生質能源研究,將分成三部分探討。 本研究的第一部分,以離子液體 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4])作為溶劑,透過微波聚合單體甲基丙烯酸丁酯(butyl methacrylate, BMA)及乙二醇二甲基丙烯酸酯(ethylene dimethacrylate, EDMA)製備高分子整體成形管柱(poly(BMA-EDMA) monolith)並混摻數種鋁金屬之MOF,應用在盤尼西林的固相微萃取(solid phase microextraction, SPME)技術,其中MIL-53-poly(BMA-EDMA)展現顯著萃取效果,在最佳化條件下,此MIL-53-polymer管柱的intra-day、inter-day及column-to-column萃取效率分別介於90.5-95.7% (< 3.5% RSDs)、90.7-97.6% (< 4.2% RSDs)及89.5-93.5% (< 3.4% RSDs)。此外,其偵測極限(limit of detection, LOD)和定量極限(limit of quantification)分別為0.06-0.26 µg L-1 和 0.20-0.87 µg L-1。最後將MIL-53-polymer應用在河水及牛奶實際樣品,經添加標準品進行萃取後分別可得到回收率80.8-90.9% (< 6.7% RSDs)和81.1-100.7% (< 7.1% RSDs)。MIL-53-polymer的高穩定性,顯示其在層析分離和SPME技術方面的可行性。 第二部分中,將胺基酸及豬胰脂肪酶(porcine pancreas lipase)共固定化在MOF-1,4-NDC(Al)材料 (簡稱PP@MOF-1,4-NDC(Al)),作為異相生物性催化劑。MOF的微孔特性可避免脯胺酸(proline)在反應過程中的脫離並增加固定化酵素重複使用之催化活性。此外,胺基酸透過氫鍵與靜電交互作用使得 MOF對PPL的吸附效率提升。此生物性催化劑可成功應用在不對稱碳-碳鍵生成(asymmetric carbon-carbon bond formation)反應並可重複使用數次。 本研究最後一部分, 利用磺酸化的MOF (UiO-66-SO3H),在離子液體存在下針對大豆油與低碳數醇類進行轉酯化反應。在最佳化的條件下,UiO-66-SO3H40%擁有最高的催化活性,在100oC下反應12小時,產率可達80.5%,Zr oxo團簇和具磺酸化的苯環可作為布朗斯特酸(Brønsted acid)和路易斯酸(Lewis acid)活性部位,提供催化劑的良好催化效果.

英文摘要

In this study, the applications of metal-organic frameworks (MOFs) in analytical chemistry, biocatalysis and bioenergy were explored. First, several aluminum-based MOFs were incorporated into the poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) monolith via microwave polymerization of BMA and EDMA monomer solution using 1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) ionic liquid (IL), as reaction media. The Al-MOF-polymer monolithic columns were applied in solid-phase microextraction (SPME) of penicillins wherein the MIL-53-poly(BMA-EDMA) exhibited remarkable extraction performance. Under the optimized conditions, the extraction efficiencies of MIL-53-polymer (n=3) were in the range of 90.5-95.7% (< 3.5% RSDs), 90.7-97.6% (< 4.2% RSDs), and 89.5-93.5% (< 3.4%RSDs) for intra-day, inter-day and column-to-column, respectively. Furthermore, the limit of detections and quantifications were in the range of 0.06-0.26 µg L-1 and 0.20-0.87 µg L-1, respectively. Finally, the fabricated MIL-53-polymer was applied in real sample analysis of river water and milk by spiking with known concentration of penicillins. The extraction recoveries were in the range of 80.8-90.9% (< 6.7% RSDs) and 81.1-100.7% (< 7.1% RSDs) for river water and milk sample, respectively. With excellent stability, the as-prepared MIL-53-polymer can be useful in chromatographic science and SPME application. Second, the amino acid and porcine pancreas lipase were co-immobilized on MOF-1,4-NDC(Al) (PP@MOF-1,4-NDC) and applied as heterogeneous biocatalyst for chemical transformation. The microporous MOF prevented the leaching of L-proline and thus contributing to enhancement of the catalytic activity of the immobilized enzyme. The incorporation of amino acid through hydrogen bonding and electrostatic interaction with PPL increased the loading efficiency of MOF. The as-prepared biocatalyst was successfully applied in asymmetric carbon-carbon bond formation and could be useful for several cycles. Lastly, sulfonated MOF (UiO-66-SO3H) was used in the transesterification of soybean oil with short chain alcohols and ionic liquid. Under the optimized condition, the UiO-66-SO3H40% afforded the highest catalytic activity with 80.5% yield at 100 ºC for 12 h reaction time. The Zr oxo clusters and benzene functionalized SO3H provided the good performance of the catalysts, which acted as Brønsted acid and Lewis acid sites, respectively.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. [1] C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145-2148.
    連結:
  2. [2] H. Kataoka, Current Developments and Future Trends in Solid-phase Microextraction Techniques for Pharmaceutical and Biomedical Analyses, Anal. Sci. 27 (2011) 893-893.
    連結:
  3. [3] D. Louch, S. Motlagh, J. Pawliszyn, Dynamics of organic compound extraction from water using liquid-coated fused silica fibers, Anal. Chem. 64 (1992) 1187-1199.
    連結:
  4. [4] Z. Zhang, J. Pawliszyn, Headspace solid-phase microextraction, Anal. Chem. 65 (1993) 1843-1852.
    連結:
  5. [5] G. Vas, K. Vékey, Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis, J. Mass Spec. 39 (2004) 233-254.
    連結:
  6. [6] H. Kataoka, Automated sample preparation using in-tube solid-phase microextraction and its application – a review, Anal. Bioanal. Chem. 373 (2002) 31-45.
    連結:
  7. [7] A. Namera, T. Saito, Advances in monolithic materials for sample preparation in drug and pharmaceutical analysis, TrAC Trends Anal. Chem. 45 (2013) 182-196.
    連結:
  8. [8] W. Li, X. Zhou, J. Ye, Q. Jia, Development of a γ-alumina- nanoparticle-functionalized porous polymer monolith for the enrichment of Sudan dyes in red wine samples, J. Sep. Sci. 36 (2013) 3330-3337.
    連結:
  9. [9] S. Tong, Q. Liu, Y. Li, W. Zhou, Q. Jia, T. Duan, Preparation of porous polymer monolithic column incorporated with graphene nanosheets for solid phase microextraction and enrichment of glucocorticoids, J. Chrom. A 1253 (2012) 22-31.
    連結:
  10. [10] X. Wang, X. Li, Z. Li, Y. Zhang, Y. Bai, H. Liu, Online Coupling of In-Tube Solid-Phase Microextraction with Direct Analysis in Real Time Mass Spectrometry for Rapid Determination of Triazine Herbicides in Water Using Carbon-Nanotubes-Incorporated Polymer Monolith, Anal. Chem. 86 (2014) 4739-4747.
    連結:
  11. [12] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi, Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks, Acc. Chem. Res. 34 (2001) 319-330.
    連結:
  12. [13] S. Kitagawa, R. Kitaura, S.-i. Noro, Functional Porous Coordination Polymers, Angew. Chem. Int. Ed. 43 (2004) 2334-2375.
    連結:
  13. [14] J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials, Micropor. Mesopor. Mat. 73 (2004) 3-14.
    連結:
  14. [15] Z.Y. Gu, C.X. Yang, N. Chang, X.P. Yan, Metal-organic frameworks for analytical chemistry: From sample collection to chromatographic separation, Acc. Chem. Res. 45 (2012) 734-745.
    連結:
  15. [16] P. Rocío-Bautista, I. Pacheco-Fernández, J. Pasán, V. Pino, Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – A review, Anal. Chim. Acta 939 (2016) 26-41.
    連結:
  16. [17] X.-F. Chen, H. Zang, X. Wang, J.-G. Cheng, R.-S. Zhao, C.-G. Cheng, X.-Q. Lu, Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry, Analyst, 137 (2012) 5411-5419.
    連結:
  17. [18] X.-Y. Cui, Z.-Y. Gu, D.-Q. Jiang, Y. Li, H.-F. Wang, X.-P. Yan, In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues, Anal. Chem. 81 (2009) 9771-9777.
    連結:
  18. [19] C. Hu, M. He, B. Chen, C. Zhong, B. Hu, Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples, J. Chromatogr. A 1310 (2013) 21-30.
    連結:
  19. [20] H.-B. Shang, C.-X. Yang, X.-P. Yan, Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples, J. Chromatogr. A 1357 (2014) 165-171.
    連結:
  20. [21] Y.-Y. Wu, C.-X. Yang, X.-P. Yan, Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls, J. Chromatogr. A 1334 (2014) 1-8.
    連結:
  21. [22] G. Zhang, X. Zang, Z. Li, C. Wang, Z. Wang, Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples, Talanta 129 (2014) 600-605.
    連結:
  22. [23] S. Zhang, Z. Du, G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples, Talanta 115 (2013) 32-39.
    連結:
  23. [24] Y.-A. Li, F. Yang, Z.-C. Liu, Q.-K. Liu, Y.-B. Dong, A porous Cd(II)-MOF-coated quartz fiber for solid-phase microextraction of BTEX, J. Mater. Chem. A 2 (2014) 13868-13872.
    連結:
  24. [25] N. Chang, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Metal-Organic-Framework-Based Tandem Molecular Sieves as a Dual Platform for Selective Microextraction and High-Resolution Gas Chromatographic Separation of n-Alkanes in Complex Matrixes, Anal. Chem. 83 (2011) 7094-7101.
    連結:
  25. [27] A. Aquino, K.A. Wanderley, C.d.O. Paiva-Santos, G.F. de Sá, M.d.R. Alexandre, S.A. Júnior, S. Navickiene, Coordination polymer adsorbent for matrix solid-phase dispersion extraction of pesticides during analysis of dehydrated Hyptis pectinata medicinal plant by GC/MS, Talanta 83 (2010) 631-636.
    連結:
  26. [28] S. Zhang, Z. Jiao, W. Yao, A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples, J. Chromatogr. A 1371 (2014) 74-81.
    連結:
  27. [29] C. Hu, M. He, B. Chen, C. Zhong, B. Hu, Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples, J. Chromatogr. A 1356 (2014) 45-53.
    連結:
  28. [30] C.-L. Lin, S. Lirio, Y.-T. Chen, C.-H. Lin, H.-Y. Huang, A novel hybrid metal-organic framework. Polymeric monolith for solid-phase microextraction, Chem. Euro. J. 20 (2014) 3317-3321.
    連結:
  29. [31] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Euro. J. 10 (2004) 1373-1382.
    連結:
  30. [32] Q. Yang, S. Vaesen, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. De Weireld, G. Maurin, Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools, J. Mater. Chem. 22 (2012) 10210-10220.
    連結:
  31. [33] L. Hamon, C. Serre, T. Devic, T. Loiseau, F. Millange, G. Férey, G.D. Weireld, Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal−Organic Frameworks at Room Temperature, J. Am. Chem. Soc. 131 (2009) 8775-8777.
    連結:
  32. [34] D.V. Patil, P.B.S. Rallapalli, G.P. Dangi, R.J. Tayade, R.S. Somani, H.C. Bajaj, MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions, Industrial & Engineering Chemistry Research 50 (2011) 10516-10524.
    連結:
  33. [35] Y. Xiao, T. Han, G. Xiao, Y. Ying, H. Huang, Q. Yang, D. Liu, C. Zhong, Highly Selective Adsorption and Separation of Aniline/Phenol from Aqueous Solutions by Microporous MIL-53(Al): A Combined Experimental and Computational Study, Langmuir 30 (2014) 12229-12235.
    連結:
  34. [36] L. Xie, D. Liu, H. Huang, Q. Yang, C. Zhong, Efficient capture of nitrobenzene from wastewater using metal-organic frameworks, Chem. Eng. J. 246 (2014) 142-149.
    連結:
  35. [37] M. Zhou, Y.-n. Wu, J. Qiao, J. Zhang, A. McDonald, G. Li, F. Li, The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al), J. Colloid Interface Sci. 405 (2013) 157-163.
    連結:
  36. [38] K. Hult, P. Berglund, Enzyme promiscuity: mechanism and applications, Trends Biotechnol. 25 (2007) 231-238.
    連結:
  37. [39] Y.-L. Chen, W. Li, Y. Liu, Z. Guan, Y.-H. He, Trypsin-catalyzed direct asymmetric aldol reaction, J. Mol. Catal. B Enzym. 87 (2013) 83-87.
    連結:
  38. [40] J.-P. Fu, N. Gao, Y. Yang, Z. Guan, Y.-H. He, Ficin-catalyzed asymmetric aldol reactions of heterocyclic ketones with aldehydes, J. Mol. Catal. B Enzym. 97 (2013) 1-4.
    連結:
  39. [41] Z. Guan, J.-P. Fu, Y.-H. He, Biocatalytic promiscuity: lipase-catalyzed asymmetric aldol reaction of heterocyclic ketones with aldehydes, Tetrahedron Lett. 53 (2012) 4959-4961.
    連結:
  40. [42] W. Haoran, W. Zhi, Z. Hong, C. Ge, Y. Hong, W. Lei, Enzyme catalytic promiscuity: asymmetric aldol addition reaction catalyzed by a novel thermophilic esterase in organic solvent, Green Chem. Lett. Rev. 7 (2014) 145-149.
    連結:
  41. [43] Y.-H. He, H.-H. Li, Y.-L. Chen, Y. Xue, Y. Yuan, Z. Guan, Chymopapain-Catalyzed Direct Asymmetric Aldol Reaction, Adv. Synth. Catal. 354 (2012) 712-719.
    連結:
  42. [44] C. Li, X.-W. Feng, N. Wang, Y.-J. Zhou, X.-Q. Yu, Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction, Green Chem. 10 (2008) 616-618.
    連結:
  43. [45] C. Li, Y.-J. Zhou, N. Wang, X.-W. Feng, K. Li, X.-Q. Yu, Promiscuous protease-catalyzed aldol reactions: A facile biocatalytic protocol for carbon–carbon bond formation in aqueous media, J. Biotechnol. 150 (2010) 539-545.
    連結:
  44. [46] H.-H. Li, Y.-H. He, Z. Guan, Protease-catalyzed direct aldol reaction, Catal. Commun. 12 (2011) 580-582.
    連結:
  45. [47] Z.-Q. Liu, Z.-W. Xiang, Z. Shen, Q. Wu, X.-F. Lin, Enzymatic enantioselective aldol reactions of isatin derivatives with cyclic ketones under solvent-free conditions, Biochimie 101 (2014) 156-160.
    連結:
  46. [48] M. López-Iglesias, E. Busto, V. Gotor, V. Gotor-Fernández, Use of Protease from Bacillus licheniformis as Promiscuous Catalyst for Organic Synthesis: Applications in C=C and C=N Bond Formation Reactions, Adv. Synth. Catal. 353 (2011) 2345-2353.
    連結:
  47. [49] B.-H. Xie, W. Li, Y. Liu, H.-H. Li, Z. Guan, Y.-H. He, The enzymatic asymmetric aldol reaction using acidic protease from Aspergillus usamii, Tetrahedron 68 (2012) 3160-3164.
    連結:
  48. [50] Z.-B. Xie, N. Wang, G.-F. Jiang, X.-Q. Yu, Biocatalytic asymmetric aldol reaction in buffer solution, Tetrahedron Lett. 54 (2013) 945-948.
    連結:
  49. [51] Z.-B. Xie, N. Wang, L.-H. Zhou, F. Wan, T. He, Z.-G. Le, X.-Q. Yu, Lipase-Catalyzed Stereoselective Cross-Aldol Reaction Promoted by Water, ChemCatChem 5 (2013) 1935-1940.
    連結:
  50. [52] W.-B. Wu, N. Wang, J.-M. Xu, Q. Wu, X.-F. Lin, Penicillin G acylase catalyzed Markovnikov addition of allopurinol to vinyl ester, Chem. Comm. (2005) 2348-2350.
    連結:
  51. [53] W.-B. Wu, J.-M. Xu, Q. Wu, D.-S. Lv, X.-F. Lin, Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media, Adv. Synth. Catal. 348 (2006) 487-492.
    連結:
  52. [54] M.T. Reetz, R. Mondière, J.D. Carballeira, Enzyme promiscuity: first protein-catalyzed Morita–Baylis–Hillman reaction, Tetrahedron Lett. 48 (2007) 1679-1681.
    連結:
  53. [55] Z. Guan, J. Song, Y. Xue, D.-C. Yang, Y.-H. He, Enzyme-catalyzed asymmetric Mannich reaction using acylase from Aspergillus melleus, J. Mol. Catal. B Enzym. 111 (2015) 16-20.
    連結:
  54. [56] Y. Xue, L.-P. Li, Y.-H. He, Z. Guan, Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent, Sci. Rep. 2 (2012) 761.
    連結:
  55. [57] J.-F. Cai, Z. Guan, Y.-H. He, The lipase-catalyzed asymmetric C–C Michael addition, J. Mol. Catal. B Enzym. 68 (2011) 240-244.
    連結:
  56. [58] B.-H. Xie, Z. Guan, Y.-H. He, Promiscuous enzyme-catalyzed Michael addition: synthesis of warfarin and derivatives, J. Chem. Technol. Biotechnol. 87 (2012) 1709-1714.
    連結:
  57. [59] R.K.O. Sigel, A.M. Pyle, Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry, Chem. Rev. 107 (2007) 97-113.
    連結:
  58. [60] C.M. Thomas, T.R. Ward, Artificial metalloenzymes: proteins as hosts for enantioselective catalysis, Chem. Soc. Rev. 34 (2005) 337-346.
    連結:
  59. [61] T.R. Ward, Artificial Metalloenzymes Based on the Biotin−Avidin Technology: Enantioselective Catalysis and Beyond, Accounts of Chemical Research 44 (2011) 47-57.
    連結:
  60. [62] P.P. Bora, M. Bihani, G. Bez, Beyond enzymatic promiscuity: asymmetric induction by l-proline on lipase catalyzed synthesis of polyfunctionalized 4H-pyrans, RSC Adv. 5 (2015) 50597-50603.
    連結:
  61. [63] B. List, R.A. Lerner, C.F. Barbas, Proline-Catalyzed Direct Asymmetric Aldol Reactions, J. Am. Chem. Soc. 122 (2000) 2395-2396.
    連結:
  62. [64] F. Hakiminia, B. Ranjbar, K. Khalifeh, k. khajeh, Kinetic and thermodynamic properties of pseudomonas fluorescence lipase upon addition of proline, Int. J. Biol. Macromolec. 55 (2013) 123-126.
    連結:
  63. [65] H. Hiroyuki, A. Tsutomu, S. Kentaro, Effect of Additives on Protein Aggregation, Curr. Pharm. Biotechnol. 10 (2009) 400-407.
    連結:
  64. [66] S.-H. Kim, Y.-B. Yan, H.-M. Zhou, Role of osmolytes as chemical chaperones during the refolding of aminoacylase, Biochem. Cell Biol. 84 (2006) 30-38.
    連結:
  65. [67] T.K.S. Kumat, D. Samuel, G. Jayaraman, T. Srimathi, C. Yu, The role of proline in the prevention of aggregation during protein folding in vitro, IUBMB Life 46 (1998) 509-517.
    連結:
  66. [68] F.-G. Meng, Y.-D. Park, H.-M. Zhou, Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase, Int. J. Biochem. Cell Biol. 33 (2001) 701-709.
    連結:
  67. [69] P. Adlercreutz, Immobilisation and application of lipases in organic media, Chem. Soc. Rev. 42 (2013) 6406-6436.
    連結:
  68. [70] N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Enzymes immobilized in mesoporous silica: A physical–chemical perspective, Adv. Colloid Interface Sci. 205 (2014) 339-360.
    連結:
  69. [71] Y. Chen, S. Han, X. Li, Z. Zhang, S. Ma, Why Does Enzyme Not Leach from Metal–Organic Frameworks (MOFs)? Unveiling the Interactions between an Enzyme Molecule and a MOF, Inorg. Chem. 53 (2014) 10006-10008.
    連結:
  70. [72] Y. Chen, V. Lykourinou, T. Hoang, L.-J. Ming, S. Ma, Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes, Inorg. Chem. 51 (2012) 9156-9158.
    連結:
  71. [73] V. Lykourinou, Y. Chen, X.-S. Wang, L. Meng, T. Hoang, L.-J. Ming, R.L. Musselman, S. Ma, Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis, J. Am. Chem. Soc. 133 (2011) 10382-10385.
    連結:
  72. [74] D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei, W. Wan, D. Yuan, Y.-P. Chen, X. Wang, K. Wang, X. Lian, Z.-Y. Gu, J. Park, X. Zou, H.-C. Zhou, Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation, Nature Commun. 6 (2015) 5979.
    連結:
  73. [75] P. Li, S.-Y. Moon, M.A. Guelta, S.P. Harvey, J.T. Hupp, O.K. Farha, Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability, J. Am. Chem. Soc. 138 (2016) 8052-8055.
    連結:
  74. [76] P. Li, S.-Y. Moon, M.A. Guelta, L. Lin, D.A. Gómez-Gualdrón, R.Q. Snurr, S.P. Harvey, J.T. Hupp, O.K. Farha, Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis, ACS Nano 10 (2016) 9174-9182.
    連結:
  75. [77] X. Lian, Y.-P. Chen, T.-F. Liu, H.-C. Zhou, Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF, Chem. Sci. 7 (2016) 6969-6973.
    連結:
  76. [78] K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation, Chem. Comm. 52 (2016) 473-476.
    連結:
  77. [79] K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nature Commun. 6 (2015) 7240.
    連結:
  78. [80] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities, Nano Lett. 14 (2014) 5761-5765.
    連結:
  79. [81] S. Patra, T. Hidalgo Crespo, A. Permyakova, C. Sicard, C. Serre, A. Chausse, N. Steunou, L. Legrand, Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform, J. Mater. Chem. B 3 (2015) 8983-8992.
    連結:
  80. [82] F.-K. Shieh, S.-C. Wang, C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J.V. Morabito, P. Hu, M.-H. Hsu, K.C.W. Wu, C.-K. Tsung, Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals, J. Am. Chem. Soc. 137 (2015) 4276-4279.
    連結:
  81. [83] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Comm. 51 (2015) 13408-13411.
    連結:
  82. [84] S.-L. Cao, D.-M. Yue, X.-H. Li, T.J. Smith, N. Li, M.-H. Zong, H. Wu, Y.-Z. Ma, W.-Y. Lou, Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH2 MOF for Efficient Biosynthesis of Enantiopure (R)-1, 2-Octanediol in Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 4 (2016) 3586-3595.
    連結:
  83. [85] Y. Cao, Z. Wu, T. Wang, Y. Xiao, Q. Huo, Y. Liu, Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification, Dalton Trans. 45 (2016) 6998-7003.
    連結:
  84. [86] W.-L. Liu, N.-S. Yang, Y.-T. Chen, S. Lirio, C.-Y. Wu, C.-H. Lin, H.-Y. Huang, Lipase-Supported Metal–Organic Framework Bioreactor Catalyzes Warfarin Synthesis, Chem. Eur. J. 21 (2015) 115-119.
    連結:
  85. [87] W. Ma, Q. Jiang, P. Yu, L. Yang, L. Mao, Zeolitic Imidazolate Framework-Based Electrochemical Biosensor for in Vivo Electrochemical Measurements, Anal. Chem. 85 (2013) 7550-7557.
    連結:
  86. [88] S. Patra, S. Sene, C. Mousty, C. Serre, A. Chaussé, L. Legrand, N. Steunou, Design of Laccase–Metal Organic Framework-Based Bioelectrodes for Biocatalytic Oxygen Reduction Reaction, ACS App. Mater. Interfaces 8 (2016) 20012-20022.
    連結:
  87. [89] M. Zhao, X. Zhang, C. Deng, Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion, Chem. Comm. 51 (2015) 8116-8119.
    連結:
  88. [90] S. Jung, Y. Kim, S.-J. Kim, T.-H. Kwon, S. Huh, S. Park, Bio-functionalization of metal-organic frameworks by covalent protein conjugation, Chem. Comm. 47 (2011) 2904-2906.
    連結:
  89. [91] Y.-H. Shih, S.-H. Lo, N.-S. Yang, B. Singco, Y.-J. Cheng, C.-Y. Wu, I.H. Chang, H.-Y. Huang, C.-H. Lin, Trypsin-Immobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis, ChemPlusChem 77 (2012) 982-986.
    連結:
  90. [92] W. Wang, L. Wang, Y. Huang, Z. Xie, X. Jing, Nanoscale Metal–Organic Framework–Hemoglobin Conjugates, Asian Chem. J. 11 (2016) 750-756.
    連結:
  91. [93] X. Wang, T.A. Makal, H.-C. Zhou, Protein Immobilization in Metal–Organic Frameworks by Covalent Binding, Aust. J. Chem. 67 (2014) 1629-1631.
    連結:
  92. [94] L. Wen, A. Gao, Y. Cao, F. Svec, T. Tan, Y. Lv, Layer-by-Layer Assembly of Metal–Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization, Macromol. Rapid Commun. 37 (2016) 551-557.
    連結:
  93. [95] W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang, C.-H. Lin, Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion, J. Mater. Chem. B 1 (2013) 928-932.
    連結:
  94. [96] W.-L. Liu, C.-Y. Wu, C.-Y. Chen, B. Singco, C.-H. Lin, H.-Y. Huang, Fast Multipoint Immobilized MOF Bioreactor, Chem. Euro. J. 20 (2014) 8923-8928.
    連結:
  95. [97] M. Banerjee, S. Das, M. Yoon, H.J. Choi, M.H. Hyun, S.M. Park, G. Seo, K. Kim, Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal−Organic Porous Materials, J. Am. Chem. Soc. 131 (2009) 7524-7525.
    連結:
  96. [98] W. Zhu, C. He, P. Wu, X. Wu, C. Duan, "Click" post-synthetic modification of metal-organic frameworks with chiral functional adduct for heterogeneous asymmetric catalysis, Dalton Trans. 41 (2012) 3072-3077.
    連結:
  97. [99] J. Janaun, N. Ellis, Perspectives on biodiesel as a sustainable fuel, Renew. Sustainable Energy Rev. 14 (2010) 1312-1320.
    連結:
  98. [100] S. Semwal, A.K. Arora, R.P. Badoni, D.K. Tuli, Biodiesel production using heterogeneous catalysts, Bioresour. Technol. 102 (2011) 2151-2161.
    連結:
  99. [101] A.P.S. Chouhan, A.K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review, Renew. Sustainable Energy Rev. 15 (2011) 4378-4399.
    連結:
  100. [102] A.F. Lee, J.A. Bennett, J.C. Manayil, K. Wilson, Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification, Chem. Soc. Rev. 43 (2014) 7887-7916.
    連結:
  101. [103] M. Zabeti, W.M.A. Wan Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Processing Technol. 90 (2009) 770-777.
    連結:
  102. [104] A.L. de Lima, C.M. Ronconi, C.J.A. Mota, Heterogeneous basic catalysts for biodiesel production, Catal. Sci. Tech. 6 (2016) 2877-2891.
    連結:
  103. [105] D.-W. Lee, Y.-M. Park, K.-Y. Lee, Heterogeneous Base Catalysts for Transesterification in Biodiesel Synthesis, Catal. Surv. Asia 13 (2009) 63-77.
    連結:
  104. [106] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel 90 (2011) 1309-1324.
    連結:
  105. [107] F. Su, Y. Guo, Advancements in solid acid catalysts for biodiesel production, Green Chem. 16 (2014) 2934-2957.
    連結:
  106. [108] A.A. Refaat, Biodiesel production using solid metal oxide catalysts, Int. J. Environ. Sci. Technol. 8 (2011) 203-221.
    連結:
  107. [109] F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest, Catal. Today 257, Part 2 (2015) 213-220.
    連結:
  108. [110] F. Zhou, N. Lu, B. Fan, H. Wang, R. Li, Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol, J. Energy Chem. 25 (2016) 874-879.
    連結:
  109. [111] M. Martínez-Huelamo, E. Jiménez-Gámez, M.P. Hermo, D. Barrón, J. Barbosa, Determination of penicillins in milk using LC-UV, LC-MS and LC-MS/MS, J. Sep. Sci. 32 (2009) 2385-2393.
    連結:
  110. [112] B. Chen, M. Ma, X. Su, An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode, Anal. Chim. Acta 674 (2010) 89-95.
    連結:
  111. [113] A.A.M. Stolker, U.A.T. Brinkman, Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review, J. Chromatogr. A 1067 (2005) 15-53.
    連結:
  112. [115] C. Cháfer-Pericás, Á. Maquieira, R. Puchades, Fast screening methods to detect antibiotic residues in food samples, TrAC Trends Anal. Chem. 29 (2010) 1038-1049.
    連結:
  113. [116] L. Kantiani, M. Farré, D. Barceló, D. Barceló, Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples, TrAC Trends Anal. Chem. 28 (2009) 729-744.
    連結:
  114. [117] M.I. Bailón-Pérez, A.M. García-Campaña, M. del Olmo-Iruela, L. Gámiz-Gracia, C. Cruces-Blanco, Trace determination of 10 β-lactam antibiotics in environmental and food samples by capillary liquid chromatography, J. Chromatogr. A 1216 (2009) 8355-8361.
    連結:
  115. [118] F. Bruno, R. Curini, A.D. Corcia, M. Nazzari, R. Samperi, Solid-Phase Extraction Followed by Liquid Chromatography−Mass Spectrometry for Trace Determination of β-Lactam Antibiotics in Bovine Milk, J. Agric. Food Chem. 49 (2001) 3463-3470.
    連結:
  116. [119] E.N. Evaggelopoulou, V.F. Samanidou, Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus Aurata) tissue according to the European Union Decision 2002/657/EC, Food Chem. 136 1322-1329.
    連結:
  117. [120] M. Gros, S. Rodríguez-Mozaz, D. Barceló, Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr. A 1292 (2013) 173-188.
    連結:
  118. [121] J. Yin, Z. Meng, M. Du, C. Liu, M. Song, H. Wang, Pseudo-template molecularly imprinted polymer for selective screening of trace β-lactam antibiotics in river and tap water, J. Chromatogr.A 1217 (2010) 5420-5426.
    連結:
  119. [122] H. Kataoka, SPME techniques for biomedical analysis, Bioanalysis 7 (2015) 2135-2144.
    連結:
  120. [123] K. Jinno, M. Ogawa, I. Ueta, Y. Saito, Miniaturized sample preparation using a fiber-packed capillary as the medium, TrAC, Trends Anal. Chem. 26 (2007) 27-35.
    連結:
  121. [124] D.-Y. Lyu, C.-X. Yang, X.-P. Yan, Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples, J. Chromatogr. A 1393 (2015) 1-7.
    連結:
  122. [125] S. Ma, H.-C. Zhou, A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity, J. Am. Chem. Soc. 128 (2006) 11734-11735.
    連結:
  123. [126] H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, Science 327 (2010) 846.
    連結:
  124. [127] M. Kim, J.F. Cahill, K.A. Prather, S.M. Cohen, Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks, Chem. Comm. 47 (2011) 7629-7631.
    連結:
  125. [128] Y.-F. Song, L. Cronin, Postsynthetic Covalent Modification of Metal–Organic Framework (MOF) Materials, Angew. Chem. Int. Ed. 47 (2008) 4635-4637.
    連結:
  126. [129] Z. Wang, S.M. Cohen, Tandem Modification of Metal–Organic Frameworks by a Postsynthetic Approach, Angew. Chem. Int. Ed. 47 (2008) 4699-4702.
    連結:
  127. [130] Y.-B. Zhang, H. Furukawa, N. Ko, W. Nie, H.J. Park, S. Okajima, K.E. Cordova, H. Deng, J. Kim, O.M. Yaghi, Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177, J. Am. Chem. Soc. 137 (2015) 2641-2650.
    連結:
  128. [131] S. Huh, H.-T. Chen, J.W. Wiench, M. Pruski, V.S.Y. Lin, Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres, Angew. Chem. Int. Ed. 44 (2005) 1826-1830.
    連結:
  129. [132] K.M. Koeller, C.-H. Wong, Synthesis of Complex Carbohydrates and Glycoconjugates:  Enzyme-Based and Programmable One-Pot Strategies, Chem. Rev. 100 (2000) 4465-4494.
    連結:
  130. [133] N.R. Shiju, A.H. Alberts, S. Khalid, D.R. Brown, G. Rothenberg, Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions, Angew. Chem. Int. Ed. 50 (2011) 9615-9619.
    連結:
  131. [134] Y. Zhang, B. Li, S. Ma, Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis, Chem. Comm. 50 (2014) 8507-8510.
    連結:
  132. [135] S. Shylesh, A. Wagner, A. Seifert, S. Ernst, W.R. Thiel, Cooperative Acid–Base Effects with Functionalized Mesoporous Silica Nanoparticles: Applications in Carbon–Carbon Bond-Formation Reactions, Chem. Eur. J. 15 (2009) 7052-7062.
    連結:
  133. [136] R. Srirambalaji, S. Hong, R. Natarajan, M. Yoon, R. Hota, Y. Kim, Y. Ho Ko, K. Kim, Tandem catalysis with a bifunctional site-isolated Lewis acid-Bronsted base metal-organic framework, NH2-MIL-101(Al), Chem. Comm. 48 (2012) 11650-11652.
    連結:
  134. [137] F. Vermoortele, R. Ameloot, A. Vimont, C. Serre, D. De Vos, An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation, Chem. Comm. 47 (2011) 1521-1523.
    連結:
  135. [138] X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage, J. Am. Chem. Soc. 133 (2011) 11822-11825.
    連結:
  136. [139] J. Hermannsdörfer, M. Friedrich, N. Miyajima, R.Q. Albuquerque, S. Kümmel, R. Kempe, Ni/Pd@MIL-101: Synergistic Catalysis with Cavity-Conform Ni/Pd Nanoparticles, Angew. Chem. Int. Ed. 51 (2012) 11473-11477.
    連結:
  137. [140] H.-L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework, J. Am. Chem. Soc. 133 (2011) 1304-1306.
    連結:
  138. [141] F. Schröder, S. Henke, X. Zhang, R.A. Fischer, Simultaneous Gas-Phase Loading of MOF-5 with Two Metal Precursors: towards Bimetallics@MOF, Eur. J. Inorg. Chem. 2009 (2009) 3131-3140.
    連結:
  139. [142] J. Li, Q.-L. Zhu, Q. Xu, Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane, Chem. Comm. 50 (2014) 5899-5901.
    連結:
  140. [143] Q.-L. Zhu, J. Li, Q. Xu, Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance, J. Am. Chem. Soc. 135 (2013) 10210-10213.
    連結:
  141. [144] N. Cao, J. Su, W. Luo, G. Cheng, Ni–Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage, Int. J. Hydrogen Energy 39 (2014) 9726-9734.
    連結:
  142. [145] H. Dai, N. Cao, L. Yang, J. Su, W. Luo, G. Cheng, AgPd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid, J. Mat. Chem. A 2 (2014) 11060-11064.
    連結:
  143. [146] H. Dai, B. Xia, L. Wen, C. Du, J. Su, W. Luo, G. Cheng, Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid, Appl. Catal. B 165 (2015) 57-62.
    連結:
  144. [147] F. Ke, L. Wang, J. Zhu, Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability, Nanoscale 7 (2015) 1201-1208.
    連結:
  145. [148] Y.-Z. Chen, Q. Xu, S.-H. Yu, H.-L. Jiang, Tiny Pd@Co Core–Shell Nanoparticles Confined inside a Metal–Organic Framework for Highly Efficient Catalysis, Small 11 (2015) 71-76.
    連結:
  146. [149] F.G. Cirujano, F.X. Llabres i Xamena, A. Corma, MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst, Dalton Trans. 41 (2012) 4249-4254.
    連結:
  147. [150] X. Li, Z. Guo, C. Xiao, T.W. Goh, D. Tesfagaber, W. Huang, Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks, ACS Catal. 4 (2014) 3490-3497.
    連結:
  148. [151] Y. Pan, B. Yuan, Y. Li, D. He, Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework, Chem. Comm. 46 (2010) 2280-2282.
    連結:
  149. [152] C. Wang, K.E. deKrafft, W. Lin, Pt Nanoparticles@Photoactive Metal–Organic Frameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and Electron Injection, J. Am. Chem. Soc. 134 (2012) 7211-7214.
    連結:
  150. [153] M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao, Z. Tang, Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions, J. Am. Chem. Soc. 136 (2014) 1738-1741.
    連結:
  151. [154] Q. Han, C. He, M. Zhao, B. Qi, J. Niu, C. Duan, Engineering Chiral Polyoxometalate Hybrid Metal–Organic Frameworks for Asymmetric Dihydroxylation of Olefins, J. Am. Chem. Soc. 135 (2013) 10186-10189.
    連結:
  152. [155] Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework, J. Phys. Chem. C 116 (2012) 20848-20853.
    連結:
  153. [156] L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst, Nanoscale 5 (2013) 9374-9382.
    連結:
  154. [157] D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Noble Metals Can Have Different Effects on Photocatalysis Over Metal–Organic Frameworks (MOFs): A Case Study on M/NH2-MIL-125(Ti) (M=Pt and Au), Chem. Eur. J. 20 (2014) 4780-4788.
    連結:
  155. [158] B. Li, M. Chrzanowski, Y. Zhang, S. Ma, Applications of metal-organic frameworks featuring multi-functional sites, Coord. Chem. Rev. 307, Part 2 (2016) 106-129.
    連結:
  156. [159] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477-1504.
    連結:
  157. [161] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–Organic Framework Materials as Chemical Sensors, Chem. Rev. 112 (2012) 1105-1125.
    連結:
  158. [162] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404 (2000) 982-986.
    連結:
  159. [163] H.-Y. Huang, C.-L. Lin, C.-Y. Wu, Y.-J. Cheng, C.-H. Lin, Metal organic framework–organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography, Anal. Chim. Acta 779 (2013) 96-103.
    連結:
  160. [164] Y.H. Shih, B. Singco, W.L. Liu, C.H. Hsu, H.Y. Huang, A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization, Green Chem. 13 (2011) 296-299.
    連結:
  161. [165] B. Singco, C.L. Lin, Y.J. Cheng, Y.H. Shih, H.Y. Huang, Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application, Anal. Chim. Acta 746 (2012) 123-133.
    連結:
  162. [166] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485 (2012) 185-194.
    連結:
  163. [168] A. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Industrial biocatalysis today and tomorrow, Nature 409 (2001) 258-268.
    連結:
  164. [169] G. Carrea, S. Riva, Properties and Synthetic Applications of Enzymes in Organic Solvents, Angew. Chem. Int. Ed. 39 (2000) 2226-2254.
    連結:
  165. [170] Z. Guan, L.-Y. Li, Y.-H. He, Hydrolase-catalyzed asymmetric carbon-carbon bond formation in organic synthesis, RSC Adv. 5 (2015) 16801-16814.
    連結:
  166. [171] M.M. Green, Witcoff, H.A., Organic Chemistry Principles and Industrial Practice, Wiley-VCH, Weinheim (2003).
    連結:
  167. [172] R. Mestres, A green look at the aldol reaction, Green Chem. 6 (2004) 583-603.
    連結:
  168. [173] C.M. Clouthier, J.N. Pelletier, Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis, Chem. Soc. Rev. 41 (2012) 1585-1605.
    連結:
  169. [174] C.K. Prier, F.H. Arnold, Chemomimetic Biocatalysis: Exploiting the Synthetic Potential of Cofactor-Dependent Enzymes To Create New Catalysts, J. Am. Chem. Soc. 137 (2015) 13992-14006.
    連結:
  170. [175] M.E. Wilson, G.M. Whitesides, Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety, J. Am. Chem. Soc. 100 (1978) 306-307.
    連結:
  171. [176] C. Letondor, N. Humbert, T.R. Ward, Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 4683-4687.
    連結:
  172. [177] M. Dürrenberger, T. Heinisch, Y.M. Wilson, T. Rossel, E. Nogueira, L. Knörr, A. Mutschler, K. Kersten, M.J. Zimbron, J. Pierron, T. Schirmer, T.R. Ward, Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines, Angew. Chem. Int. Ed. 50 (2011) 3026-3029.
    連結:
  173. [178] T.K. Hyster, L. Knörr, T.R. Ward, T. Rovis, Biotinylated Rh(III) Complex in Engineered Streptavidin for Accelerated Asymmetric C-H Activation, Science 338 (2012) 10.1126/science.1226132.
    連結:
  174. [179] T. Heinisch, M. Pellizzoni, M. Dürrenberger, C.E. Tinberg, V. Köhler, J. Klehr, D. Häussinger, D. Baker, T.R. Ward, Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design, J. Am. Chem. Soc. 137 (2015) 10414-10419.
    連結:
  175. [180] Y. Zhang, W.-X. Feng, Y.-M. Legrand, C.T. Supuran, C.-Y. Su, M. Barboiu, Dynameric host frameworks for the activation of lipase through H-bond and interfacial encapsulation, Chem. Comm. 52 (2016) 13768-13770.
    連結:
  176. [181] S. Boschi-Muller, S. Muller, A. Van Dorsselaer, A. Böck, G. Branlant, Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity, FEBS Letters 439 (1998) 241-245.
    連結:
  177. [182] H.-j. Yu, J.-q. Liu, A. Böck, J. Li, G.-m. Luo, J.-c. Shen, Engineering Glutathione Transferase to a Novel Glutathione Peroxidase Mimic With High Catalytic Efficiency: Incoroporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system, J. Biol. Chem. 280 (2005) 11930-11935.
    連結:
  178. [183] A.M. Klibanov, Improving enzymes by using them in organic solvents, Nature 409 (2001) 241-246.
    連結:
  179. [184] L. Cao, L.v. Langen, R.A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free?, Curr. Opin. Biotechnol. 14 (2003) 387-394.
    連結:
  180. [185] P.V. Iyer, L. Ananthanarayan, Enzyme stability and stabilization—Aqueous and non-aqueous environment, Process Biochem. 43 (2008) 1019-1032.
    連結:
  181. [186] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme and Micro. Technol. 40 (2007) 1451-1463.
    連結:
  182. [187] R.C. Rodrigues, C. Ortiz, A. Berenguer-Murcia, R. Torres, R. Fernandez-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42 (2013) 6290-6307.
    連結:
  183. [188] C. Spahn, S.D. Minteer, Enzyme immobilization in biotechnology, Recent Pat. Eng. 2 (2008) 195-200.
    連結:
  184. [190] J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates, Coord. Chem. Rev. 322 (2016) 30-40.
    連結:
  185. [191] E. Gkaniatsou, C. Sicard, R. Ricoux, J.-P. Mahy, N. Steunou, C. Serre, Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection, Mater. Horiz. 4 (2017) 55-63.
    連結:
  186. [192] A.L.W. Demuynck, M.G. Goesten, E.V. Ramos-Fernandez, M. Dusselier, J. Vanderleyden, F. Kapteijn, J. Gascon, B.F. Sels, Induced Chirality in a Metal–Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions, ChemCatChem 6 (2014) 2211-2214.
    連結:
  187. [193] J. Bonnefoy, A. Legrand, E.A. Quadrelli, J. Canivet, D. Farrusseng, Enantiopure Peptide-Functionalized Metal–Organic Frameworks, J. Am. Chem. Soc. 137 (2015) 9409-9416.
    連結:
  188. [194] L. Lili, Z. Xin, R. Shumin, Y. Ying, D. Xiaoping, G. Jinsen, X. Chunming, H. Jing, Catalysis by metal-organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions, RSC Adv. 4 (2014) 13093-13107.
    連結:
  189. [195] J. Canivet, D. Farrusseng, Proline-functionalized metal-organic frameworks and their use in asymmetric catalysis: pitfalls in the MOFs rush, RSC Adv. 5 (2015) 11254-11256.
    連結:
  190. [196] J. Coste, E. Frerot, P. Jouin, Coupling N-Methylated Amino Acids Using PyBroP and PyCloP Halogenophosphonium Salts: Mechanism and Fields of Application, J. Org. Chem. 59 (1994) 2437-2446.
    連結:
  191. [197] E. Frérot, J. Coste, A. Pantaloni, M.-N. Dufour, P. Jouin, PyBOP® and PyBroP: Two reagents for the difficult coupling of the α,α-dialkyl amino acid, Aib, Tetrahedron 47 (1991) 259-270.
    連結:
  192. [198] C.A.G.N. Montalbetti, V. Falque, Amide bond formation and peptide coupling, Tetrahedron 61 (2005) 10827-10852.
    連結:
  193. [199] T. Mukaiyama, New Synthetic Reactions Based on the Onium Salts of Aza-Arenes [New synthetic methods(29)], Angew. Chem. Int. Ed. 18 (1979) 707-721.
    連結:
  194. [200] L.P. Christopher, K. Hemanathan, V.P. Zambare, Enzymatic biodiesel: Challenges and opportunities, Appl. Energy 119 (2014) 497-520.
    連結:
  195. [201] A. Gog, M. Roman, M. Toşa, C. Paizs, F.D. Irimie, Biodiesel production using enzymatic transesterification – Current state and perspectives, Renew. Energy 39 (2012) 10-16.
    連結:
  196. [202] S. Hama, A. Kondo, Enzymatic biodiesel production: An overview of potential feedstocks and process development, Bioresour. Technol. 135 (2013) 386-395.
    連結:
  197. [203] S.V. Ranganathan, S.L. Narasimhan, K. Muthukumar, An overview of enzymatic production of biodiesel, Bioresour. Technol. 99 (2008) 3975-3981.
    連結:
  198. [204] M. Szczęsna Antczak, A. Kubiak, T. Antczak, S. Bielecki, Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process, Renew. Energy 34 (2009) 1185-1194.
    連結:
  199. [205] M. Verziu, S.M. Coman, R. Richards, V.I. Parvulescu, Transesterification of vegetable oils over CaO catalysts, Catal. Today 167 (2011) 64-70.
    連結:
  200. [206] M. Di Serio, R. Tesser, L. Casale, A. D’Angelo, M. Trifuoggi, E. Santacesaria, Heterogeneous Catalysis in Biodiesel Production: The Influence of Leaching, Top. Catal. 53 (2010) 811-819.
    連結:
  201. [207] M. López Granados, D. Martín Alonso, A.C. Alba-Rubio, R. Mariscal, M. Ojeda, P. Brettes, Transesterification of Triglycerides by CaO: Increase of the Reaction Rate by Biodiesel Addition, Energy Fuels 23 (2009) 2259-2263.
    連結:
  202. [208] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production, Fuel 87 (2008) 2798-2806.
    連結:
  203. [209] H. Jeon, D.J. Kim, S.J. Kim, J.H. Kim, Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production, Fuel Process. Technol. 116 (2013) 325-331.
    連結:
  204. [210] J.M. Montero, P. Gai, K. Wilson, A.F. Lee, Structure-sensitive biodiesel synthesis over MgO nanocrystals, Green Chem. 11 (2009) 265-268.
    連結:
  205. [211] M. Verziu, B. Cojocaru, J. Hu, R. Richards, C. Ciuculescu, P. Filip, V.I. Parvulescu, Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts, Green Chem. 10 (2008) 373-381.
    連結:
  206. [212] N. Kaur, A. Ali, Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil, Fuel Process. Technol. 119 (2014) 173-184.
    連結:
  207. [213] C.S. MacLeod, A.P. Harvey, A.F. Lee, K. Wilson, Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production, Chem. Eng. J. 135 (2008) 63-70.
    連結:
  208. [214] R.S. Watkins, A.F. Lee, K. Wilson, Li-CaO catalysed tri-glyceride transesterification for biodiesel applications, Green Chem. 6 (2004) 335-340.
    連結:
  209. [215] J.M. Montero, K. Wilson, A.F. Lee, Cs Promoted Triglyceride Transesterification Over MgO Nanocatalysts, Top. Catal. 53 (2010) 737-745.
    連結:
  210. [216] J.J. Woodford, C.M.A. Parlett, J.-P. Dacquin, G. Cibin, A. Dent, J. Montero, K. Wilson, A.F. Lee, Identifying the active phase in Cs-promoted MgO nanocatalysts for triglyceride transesterification, J. Chem. Technol. Biotechnol. 89 (2014) 73-80.
    連結:
  211. [217] J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J.D. Méndez Díaz, M.S. Polo, J.R. Utrilla, Selection of heterogeneous catalysts for biodiesel production from animal fat, Fuel 94 (2012) 418-425.
    連結:
  212. [218] N. Santiago-Torres, I.C. Romero-Ibarra, H. Pfeiffer, Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production, Fuel Process. Technol. 120 (2014) 34-39.
    連結:
  213. [219] A. Molaei Dehkordi, M. Ghasemi, Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts, Fuel Process. Technol. 97 (2012) 45-51.
    連結:
  214. [220] Y.H. Taufiq-Yap, H.V. Lee, R. Yunus, J.C. Juan, Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca–Mg mixed oxide catalyst: Effect of stoichiometric composition, Chem. Eng. J. 178 (2011) 342-347.
    連結:
  215. [221] B. Smit, T.L.M. Maesen, Towards a molecular understanding of shape selectivity, Nature 451 (2008) 671-678.
    連結:
  216. [222] O. Babajide, N. Musyoka, L. Petrik, F. Ameer, Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production, Catal. Today 190 (2012) 54-60.
    連結:
  217. [223] H. Wu, J. Zhang, Q. Wei, J. Zheng, J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts, Fuel Process. Technol. 109 (2013) 13-18.
    連結:
  218. [224] L.D. Borges, N.N. Moura, A.A. Costa, P.R.S. Braga, J.A. Dias, S.C.L. Dias, J.L. de Macedo, G.F. Ghesti, Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: Influence of structural and acidity parameters, Appl. Catal. A. 450 (2013) 114-119.
    連結:
  219. [225] C.S. Castro, D. Cardoso, P.A.P. Nascente, J.M. Assaf, MgAlLi Mixed Oxides Derived from Hydrotalcite for Catalytic Transesterification, Catal. Lett. 141 (2011) 1316.
    連結:
  220. [226] H.J. Alves, A.M. da Rocha, M.R. Monteiro, C. Moretti, M.D. Cabrelon, C.A. Schwengber, M.C. Milinsk, Treatment of clay with KF: New solid catalyst for biodiesel production, Appl. Clay Sci. 91–92 (2014) 98-104.
    連結:
  221. [227] J.F.P. Gomes, J.F.B. Puna, L.M. Gonçalves, J.C.M. Bordado, Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production, Energy 36 (2011) 6770-6778.
    連結:
  222. [228] Z. Helwani, N. Aziz, M.Z.A. Bakar, H. Mukhtar, J. Kim, M.R. Othman, Conversion of Jatropha curcas oil into biodiesel using re-crystallized hydrotalcite, Energ. Convers. Manage. 73 (2013) 128-134.
    連結:
  223. [229] C.S. Cordeiro, F.R.d. Silva, F. Wypych, L.P. Ramos, Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel), Quím. Nova 34 (2011) 477-486.
    連結:
  224. [230] Y. Li, F. Qiu, D. Yang, X. Li, P. Sun, Preparation, characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil, Biomass Bioenergy 35 (2011) 2787-2795.
    連結:
  225. [231] D. Salinas, P. Araya, S. Guerrero, Study of potassium-supported TiO2 catalysts for the production of biodiesel, Appl. Catal. B 117–118 (2012) 260-267.
    連結:
  226. [232] A. Corma, Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev. 95 (1995) 559-614.
    連結:
  227. [233] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 120 (1998) 6024-6036.
    連結:
  228. [234] W. Xie, L. Zhao, Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil, Energ. Convers. Manage. 79 (2014) 34-42.
    連結:
  229. [235] W. Xie, M. Fan, Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst, Chem. Eng. J. 239 (2014) 60-67.
    連結:
  230. [236] E.A. Faria, H.F. Ramalho, J.S. Marques, P.A.Z. Suarez, A.G.S. Prado, Tetramethylguanidine covalently bonded onto silica gel surface as an efficient and reusable catalyst for transesterification of vegetable oil, Appl. Catal. A 338 (2008) 72-78.
    連結:
  231. [237] A.L. de Lima, A. Mbengue, R.A.S. San Gil, C.M. Ronconi, C.J.A. Mota, Synthesis of amine-functionalized mesoporous silica basic catalysts for biodiesel production, Catal. Today 226 (2014) 210-216.
    連結:
  232. [238] D. Meloni, R. Monaci, Z. Zedde, M.G. Cutrufello, S. Fiorilli, I. Ferino, Transesterification of soybean oil on guanidine base-functionalized SBA-15 catalysts, Appl. Catal. B 102 (2011) 505-514.
    連結:
  233. [239] U. Schuchardt, R. Sercheli, R.M. Vargas, Transesterification of vegetable oils: a review, J. Braz. Chem. Soc. 9 (1998) 199-210.
    連結:
  234. [240] D.P. Fabiano, B. Hamad, D. Cardoso, N. Essayem, On the understanding of the remarkable activity of template-containing mesoporous molecular sieves in the transesterification of rapeseed oil with ethanol, J. Catal. 276 (2010) 190-196.
    連結:
  235. [241] E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Synthesis of Biodiesel via Acid Catalysis, Ind. Eng. Chem. Res. 44 (2005) 5353-5363.
    連結:
  236. [242] K. Suwannakarn, E. Lotero, J.G. Goodwin Jr, C. Lu, Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides, J. Catal. 255 (2008) 279-286.
    連結:
  237. [243] K. Arata, Organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds, Green Chem. 11 (2009) 1719-1728.
    連結:
  238. [244] X.-R. Chen, Y.-H. Ju, C.-Y. Mou, Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification, J. Phy. Chem. C 111 (2007) 18731-18737.
    連結:
  239. [245] D. Rattanaphra, A.P. Harvey, A. Thanapimmetha, P. Srinophakun, Kinetic of myristic acid esterification with methanol in the presence of triglycerides over sulfated zirconia, Renew. Energy 36 (2011) 2679-2686.
    連結:
  240. [246] B.M. Reddy, M.K. Patil, Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia, Chem. Rev. 109 (2009) 2185-2208.
    連結:
  241. [247] J. Ni, F.C. Meunier, Esterification of free fatty acids in sunflower oil over solid acid catalysts using batch and fixed bed-reactors, Appl. Catal. A 333 (2007) 122-130.
    連結:
  242. [248] Y.-M. Park, J.Y. Lee, S.-H. Chung, I.S. Park, S.-Y. Lee, D.-K. Kim, J.-S. Lee, K.-Y. Lee, Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel, Bioresour. Technol. 101 (2010) S59-S61.
    連結:
  243. [249] I. Jiménez-Morales, J. Santamaría-González, P. Maireles-Torres, A. Jiménez-López, Calcined zirconium sulfate supported on MCM-41 silica as acid catalyst for ethanolysis of sunflower oil, Appl. Catal. B 103 (2011) 91-98.
    連結:
  244. [250] L. Guerreiro, J.E. Castanheiro, I.M. Fonseca, R.M. Martin-Aranda, A.M. Ramos, J. Vital, Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes, Catal. Today 118 (2006) 166-171.
    連結:
  245. [251] Y. Liu, E. Lotero, J.G. Goodwin Jr, A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis, J. Catal. 242 (2006) 278-286.
    連結:
  246. [252] T.A. Peters, N.E. Benes, A. Holmen, J.T.F. Keurentjes, Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol, Appl. Catal. A 297 (2006) 182-188.
    連結:
  247. [253] D. Chen, Z. Li, Y. Wan, X. Tu, Y. Shi, Z. Chen, W. Shen, C. Yu, B. Tu, D. Zhao, Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures, J. Mater. Chem.16 (2006) 1511-1519.
    連結:
  248. [254] L. Cao, T. Man, M. Kruk, Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As Micelle Expander, Chem. Mater. 21 (2009) 1144-1153.
    連結:
  249. [255] C. Pirez, J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification, ACS Catal. 2 (2012) 1607-1614.
    連結:
  250. [256] B. Chang, J. Fu, Y. Tian, X. Dong, Multifunctionalized Ordered Mesoporous Carbon as an Efficient and Stable Solid Acid Catalyst for Biodiesel Preparation, J. Phy. Chem. C 117 (2013) 6252-6258.
    連結:
  251. [257] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J.N. Kondo, S. Hayashi, K. Domen, A Carbon Material as a Strong Protonic Acid, Angew. Chem. Int. Ed. 43 (2004) 2955-2958.
    連結:
  252. [258] W.-Y. Lou, M.-H. Zong, Z.-Q. Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts, Bioresour. Technol. 99 (2008) 8752-8758.
    連結:
  253. [259] K. Nakajima, M. Hara, Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst, ACS Catal. 2 (2012) 1296-1304.
    連結:
  254. [260] M. Okamura, A. Takagaki, M. Toda, J.N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi, Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon, Chem. Mater. 18 (2006) 3039-3045.
    連結:
  255. [261] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups, J. Am.Chem. Soc.130 (2008) 12787-12793.
    連結:
  256. [262] M.-H. Zong, Z.-Q. Duan, W.-Y. Lou, T.J. Smith, H. Wu, Preparation of a sugar catalyst and its use for highly efficient production of biodiesel, Green Chem. 9 (2007) 434-437.
    連結:
  257. [263] Q. Guan, Y. Li, Y. Chen, Y. Shi, J. Gu, B. Li, R. Miao, Q. Chen, P. Ning, Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification, RSC Adv. 7 (2017) 7250-7258.
    連結:
  258. [264] M. Hara, Biodiesel Production by Amorphous Carbon Bearing SO3H, COOH and Phenolic OH Groups, a Solid Brønsted Acid Catalyst, Top. Catal. 53 (2010) 805-810.
    連結:
  259. [265] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.-S. Xiao, Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions, J. Mater. Chem. 22 (2012) 5495-5502.
    連結:
  260. [266] A.S. Rad, M.H. Nia, F. Ardestani, H. Nayebzadeh, Esterification of Waste Chicken Fat: Sulfonated MWCNT Toward Biodiesel Production, Waste Biomass Valori. (2016) 1-9.
    連結:
  261. [267] D.R. Stellwagen, F. van der Klis, D.S. van Es, K.P. de Jong, J.H. Bitter, Functionalized Carbon Nanofibers as Solid-Acid Catalysts for Transesterification, ChemSusChem 6 (2013) 1668-1672.
    連結:
  262. [268] A. Villa, J.-P. Tessonnier, O. Majoulet, D.S. Su, R. Schlögl, Transesterification of Triglycerides Using Nitrogen-Functionalized Carbon Nanotubes, ChemSusChem 3 (2010) 241-245.
    連結:
  263. [269] J. Alcañiz-Monge, G. Trautwein, J.P. Marco-Lozar, Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers, Appl. Catal. A 468 (2013) 432-441.
    連結:
  264. [270] V. Brahmkhatri, A. Patel, 12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids, Appl. Catal. A 403 (2011) 161-172.
    連結:
  265. [271] V. Brahmkhatri, A. Patel, Esterification of lauric acid with butanol-1 over H3PW12O40 supported on MCM-41, Fuel 102 (2012) 72-77.
    連結:
  266. [272] F. Cao, Y. Chen, F. Zhai, J. Li, J. Wang, X. Wang, S. Wang, W. Zhu, Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid, Biotechnol. Bioeng. 101 (2008) 93-100.
    連結:
  267. [273] I.V. Kozhevnikov, Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions, Chem. Rev. 98 (1998) 171-198.
    連結:
  268. [274] M.G. Kulkarni, R. Gopinath, L.C. Meher, A.K. Dalai, Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification, Green Chem. 8 (2006) 1056-1062.
    連結:
  269. [275] P. Morin, B. Hamad, G. Sapaly, M.G. Carneiro Rocha, P.G. Pries de Oliveira, W.A. Gonzalez, E. Andrade Sales, N. Essayem, Transesterification of rapeseed oil with ethanol: I. Catalysis with homogeneous Keggin heteropolyacids, Appl. Catal. A 330 (2007) 69-76.
    連結:
  270. [276] K. Narasimharao, D.R. Brown, A.F. Lee, A.D. Newman, P.F. Siril, S.J. Tavener, K. Wilson, Structure–activity relations in Cs-doped heteropolyacid catalysts for biodiesel production, J. Catal. 248 (2007) 226-234.
    連結:
  271. [277] I. Noshadi, N.A.S. Amin, R.S. Parnas, Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM), Fuel 94 (2012) 156-164.
    連結:
  272. [278] A. Patel, N. Narkhede, 12-Tungstophosphoric Acid Anchored to Zeolite Hβ: Synthesis, Characterization, and Biodiesel Production by Esterification of Oleic Acid with Methanol, Energy Fuels 26 (2012) 6025-6032.
    連結:
  273. [279] F. Su, L. Ma, Y. Guo, W. Li, Preparation of ethane-bridged organosilica group and keggin type heteropoly acid co-functionalized ZrO2 hybrid catalyst for biodiesel synthesis from eruca sativa gars oil, Catal. Sci. Tech. 2 (2012) 2367-2374.
    連結:
  274. [280] F. Su, L. Ma, D. Song, X. Zhang, Y. Guo, Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph)Si hybrid catalyst for methyl levulinate synthesis, Green Chem. 15 (2013) 885-890.
    連結:
  275. [281] F. Su, Q. Wu, D. Song, X. Zhang, M. Wang, Y. Guo, Pore morphology-controlled preparation of ZrO2-based hybrid catalysts functionalized by both organosilica moieties and Keggin-type heteropoly acid for the synthesis of levulinate esters, J. Mater. Chem. A 1 (2013) 13209-13221.
    連結:
  276. [282] L. Xu, W. Li, J. Hu, K. Li, X. Yang, F. Ma, Y. Guo, X. Yu, Y. Guo, Transesterification of soybean oil to biodiesel catalyzed by mesostructured Ta2O5-based hybrid catalysts functionalized by both alkyl-bridged organosilica moieties and Keggin-type heteropoly acid, J. Mater. Chem. 19 (2009) 8571-8579.
    連結:
  277. [283] L. Xu, W. Li, J. Hu, X. Yang, Y. Guo, Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalyst, Appl. Catal. B 90 (2009) 587-594.
    連結:
  278. [284] L. Xu, Y. Wang, X. Yang, J. Hu, W. Li, Y. Guo, Simultaneous esterification and transesterification of soybean oil with methanol catalyzed by mesoporous Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph) hybrid catalysts, Green Chem. 11 (2009) 314-317.
    連結:
  279. [285] M. Misono, Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state, Chem. Comm. (2001) 1141-1152.
    連結:
  280. [286] K. Srilatha, T. Issariyakul, N. Lingaiah, P.S. Sai Prasad, J. Kozinski, A.K. Dalai, Efficient Esterification and Transesterification of Used Cooking Oil Using 12-Tungstophosphoric Acid (TPA)/Nb2O5 Catalyst, Energy Fuels 24 (2010) 4748-4755.
    連結:
  281. [287] F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs, Chem. Eng. Sci. 124 (2015) 52-60.
    連結:
  282. [288] I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W. Böhlmann, S. Kaskel, New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate), Microporous Mesoporous Mater. 122 (2009) 93-98.
    連結:
  283. [289] W.L. Liu, S.H. Lo, B. Singco, C.C. Yang, H.Y. Huang, C.H. Lin, Novel trypsin-FITC@MOF bioreactor efficiently catalyzes protein digestion, J. Mater. Chem B 1 (2013) 928-932.
    連結:
  284. [290] T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, J. Senker, G. Férey, N. Stock, Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology, Inorg. Chem. 48 (2009) 3057-3064.
    連結:
  285. [291] A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen, M. Takata, Y. Kubota, S. Kitagawa, Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer, J. Am. Chem. Soc. 130 (2008) 13664-13672.
    連結:
  286. [292] M. Lin Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata, S. Kitagawa, Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66), Dalton Trans. 41 (2012) 13791-13794.
    連結:
  287. [293] Y. Kuwahara, H. Kango, H. Yamashita, Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to γ-Valerolactone over Sulfonic Acid-Functionalized UiO-66, ACS Sustain. Chem. Eng. 5 (2017) 1141-1152.
    連結:
  288. [294] M. Javanbakht, K.A. Pishro, A.H. Nasab, B. Akbari-adergani, Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers, Mater. Sci. Eng., C 32 (2012) 2367-2373.
    連結:
  289. [295] V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G. Amy, Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes, J. Membr. Sci. 342 (2009) 251-262.
    連結:
  290. [296] Y.S. Lee, J.H. Hong, N.Y. Jeon, K. Won, B.T. Kim, Highly Enantioselective Acylation of rac-Alkyl Lactates Using Candida antarctica Lipase B, Org. Process Res. Dev. 8 (2004) 948-951.
    連結:
  291. [297] P. Rallapalli, D. Patil, K.P. Prasanth, R. Somani, R.V. Jasra, H.C. Bajaj, An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate, MIL-53(Al), J. Porous. Mater. 17 (2010) 523-528.
    連結:
  292. [298] R. Eisert, J. Pawliszyn, Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography, Analytical Chemistry 69 (1997) 3140-3147.
    連結:
  293. [299] Y. Fan, Y.-Q. Feng, S.-L. Da, Z.-H. Wang, In-tube solid phase microextraction using a β-cyclodextrin coated capillary coupled to high performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in urine samples, Talanta 65 (2005) 111-117.
    連結:
  294. [300] M. Pera-Titus, D. Farrusseng, Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms, J. Phy. Chem. C 116 (2011) 1638-1649.
    連結:
  295. [301] M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju, U. Müller, The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications, Microporous Mesoporous Mater. 157 (2012) 131-136.
    連結:
  296. [302] G. Ferey, C. Serre, Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences, Chemical Society Reviews 38 (2009) 1380-1399.
    連結:
  297. [303] D.M. Simpson, R.J. Beynon, Acetone Precipitation of Proteins and the Modification of Peptides, J. Proteome Res. 9 (2010) 444-450.
    連結:
  298. [304] U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation, Chem. Soc. Rev. 38 (2009) 453-468.
    連結:
  299. [305] J.N. Talbert, J.M. Goddard, Enzymes on material surfaces, Colloids Surf., B 93 (2012) 8-19.
    連結:
  300. [306] Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent Functional Metal–Organic Frameworks, Chem. Rev. 112 (2012) 1126-1162.
    連結:
  301. [307] G.F.Z. da Silva, L.-J. Ming, Catechol Oxidase Activity of Di-Cu2+-Substituted Aminopeptidase from Streptomyces griseus, J. Am. Chem. Soc. 127 (2005) 16380-16381.
    連結:
  302. [308] E.T. Kaiser, D.S. Lawrence, Chemical mutation of enzyme active sites, Science 226 (1984) 505.
    連結:
  303. [309] I. Drienovska, A. Rioz-Martinez, A. Draksharapu, G. Roelfes, Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids, Chem. Sci. 6 (2015) 770-776.
    連結:
  304. [310] X. Shi, J. Liu, C. Li, Q. Yang, Pore-Size Tunable Mesoporous Zirconium Organophosphonates with Chiral l-Proline for Enzyme Adsorption, Inorg. Chem. 46 (2007) 7944-7952.
    連結:
  305. [311] L.J. Konwar, J. Wärnå, P. Mäki-Arvela, N. Kumar, J.-P. Mikkola, Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst, Fuel 166 (2016) 1-11.
    連結:
  306. References
  307. [11] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276-279.
  308. [26] M.D. Swayze, D.E. Riegner, M.A. Thomas, Z.T. Lachance, S.E. Kaplan, Am. Chem. Soc., 2011, p. CHED-281.
  309. [114] C.R. 1831/2003/E.C., Off. J. Eur. Union 23 (1990) 1-136.
  310. [160] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater. 9 (2010) 172-178.
  311. [167] E.Z. Eisenmesser, O. Millet, W. Labeikovsky, D.M. Korzhnev, M. Wolf-Watz, D.A. Bosco, J.J. Skalicky, L.E. Kay, D. Kern, Intrinsic dynamics of an enzyme underlies catalysis, Nature 438 (2005) 117-121.
  312. [189] B. Brena, P. González-Pombo, F. Batista-Viera, in: J.M. Guisan (Ed.), Immobilization of Enzymes and Cells: Third Edition, Humana Press, Totowa, NJ, 2013, p. 15-31.